2 Star 0 Fork 1

FastTunnel / HyperLPR

Create your Gitee Account
Explore and code with more than 6 million developers,Free private repositories !:)
Sign up
Clone or download
demo.py 1.68 KB
Copy Edit Web IDE Raw Blame History
jack_yu_ authored 2018-04-12 01:47 . Update demo.py
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
import time
def SpeedTest(image_path):
grr = cv2.imread(image_path)
model = pr.LPR("model/cascade.xml", "model/model12.h5", "model/ocr_plate_all_gru.h5")
model.SimpleRecognizePlateByE2E(grr)
t0 = time.time()
for x in range(20):
model.SimpleRecognizePlateByE2E(grr)
t = (time.time() - t0)/20.0
print "Image size :" + str(grr.shape[1])+"x"+str(grr.shape[0]) + " need " + str(round(t*1000,2))+"ms"
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0)
def drawRectBox(image,rect,addText):
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2,cv2.LINE_AA)
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1,
cv2.LINE_AA)
img = Image.fromarray(image)
draw = ImageDraw.Draw(img)
draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC)
imagex = np.array(img)
return imagex
import HyperLPRLite as pr
import cv2
import numpy as np
grr = cv2.imread("images_rec/2_.jpg")
model = pr.LPR("model/cascade.xml","model/model12.h5","model/ocr_plate_all_gru.h5")
for pstr,confidence,rect in model.SimpleRecognizePlateByE2E(grr):
if confidence>0.7:
image = drawRectBox(grr, rect, pstr+" "+str(round(confidence,3)))
print "plate_str:"
print pstr
print "plate_confidence"
print confidence
cv2.imshow("image",image)
cv2.waitKey(0)
SpeedTest("images_rec/2_.jpg")

Comment ( 0 )

Sign in for post a comment

1
https://gitee.com/Hgui/HyperLPR.git
git@gitee.com:Hgui/HyperLPR.git
Hgui
HyperLPR
HyperLPR
master

Search