1 Star 0 Fork 254

李斌 / PaddleDetection_1

forked from PaddlePaddle / PaddleDetection 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
csp_pan.py 12.25 KB
一键复制 编辑 原始数据 按行查看 历史
still 提交于 2022-02-11 10:51 . add a new version code of PicoDet (#5170)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/yolox_pafpn.py
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['CSPPAN']
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channel=96,
out_channel=96,
kernel_size=3,
stride=1,
groups=1,
act='leaky_relu'):
super(ConvBNLayer, self).__init__()
initializer = nn.initializer.KaimingUniform()
self.conv = nn.Conv2D(
in_channels=in_channel,
out_channels=out_channel,
kernel_size=kernel_size,
groups=groups,
padding=(kernel_size - 1) // 2,
stride=stride,
weight_attr=ParamAttr(initializer=initializer),
bias_attr=False)
self.bn = nn.BatchNorm2D(out_channel)
if act == "hard_swish":
act = 'hardswish'
self.act = act
def forward(self, x):
x = self.bn(self.conv(x))
if self.act:
x = getattr(F, self.act)(x)
return x
class DPModule(nn.Layer):
"""
Depth-wise and point-wise module.
Args:
in_channel (int): The input channels of this Module.
out_channel (int): The output channels of this Module.
kernel_size (int): The conv2d kernel size of this Module.
stride (int): The conv2d's stride of this Module.
act (str): The activation function of this Module,
Now support `leaky_relu` and `hard_swish`.
"""
def __init__(self,
in_channel=96,
out_channel=96,
kernel_size=3,
stride=1,
act='leaky_relu',
use_act_in_out=True):
super(DPModule, self).__init__()
initializer = nn.initializer.KaimingUniform()
self.use_act_in_out = use_act_in_out
self.dwconv = nn.Conv2D(
in_channels=in_channel,
out_channels=out_channel,
kernel_size=kernel_size,
groups=out_channel,
padding=(kernel_size - 1) // 2,
stride=stride,
weight_attr=ParamAttr(initializer=initializer),
bias_attr=False)
self.bn1 = nn.BatchNorm2D(out_channel)
self.pwconv = nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=1,
groups=1,
padding=0,
weight_attr=ParamAttr(initializer=initializer),
bias_attr=False)
self.bn2 = nn.BatchNorm2D(out_channel)
if act == "hard_swish":
act = 'hardswish'
self.act = act
def forward(self, x):
x = self.bn1(self.dwconv(x))
if self.act:
x = getattr(F, self.act)(x)
x = self.bn2(self.pwconv(x))
if self.use_act_in_out and self.act:
x = getattr(F, self.act)(x)
return x
class DarknetBottleneck(nn.Layer):
"""The basic bottleneck block used in Darknet.
Each Block consists of two ConvModules and the input is added to the
final output. Each ConvModule is composed of Conv, BN, and act.
The first convLayer has filter size of 1x1 and the second one has the
filter size of 3x3.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
expansion (int): The kernel size of the convolution. Default: 0.5
add_identity (bool): Whether to add identity to the out.
Default: True
use_depthwise (bool): Whether to use depthwise separable convolution.
Default: False
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
expansion=0.5,
add_identity=True,
use_depthwise=False,
act="leaky_relu"):
super(DarknetBottleneck, self).__init__()
hidden_channels = int(out_channels * expansion)
conv_func = DPModule if use_depthwise else ConvBNLayer
self.conv1 = ConvBNLayer(
in_channel=in_channels,
out_channel=hidden_channels,
kernel_size=1,
act=act)
self.conv2 = conv_func(
in_channel=hidden_channels,
out_channel=out_channels,
kernel_size=kernel_size,
stride=1,
act=act)
self.add_identity = \
add_identity and in_channels == out_channels
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.add_identity:
return out + identity
else:
return out
class CSPLayer(nn.Layer):
"""Cross Stage Partial Layer.
Args:
in_channels (int): The input channels of the CSP layer.
out_channels (int): The output channels of the CSP layer.
expand_ratio (float): Ratio to adjust the number of channels of the
hidden layer. Default: 0.5
num_blocks (int): Number of blocks. Default: 1
add_identity (bool): Whether to add identity in blocks.
Default: True
use_depthwise (bool): Whether to depthwise separable convolution in
blocks. Default: False
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
expand_ratio=0.5,
num_blocks=1,
add_identity=True,
use_depthwise=False,
act="leaky_relu"):
super().__init__()
mid_channels = int(out_channels * expand_ratio)
self.main_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
self.short_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
self.final_conv = ConvBNLayer(
2 * mid_channels, out_channels, 1, act=act)
self.blocks = nn.Sequential(* [
DarknetBottleneck(
mid_channels,
mid_channels,
kernel_size,
1.0,
add_identity,
use_depthwise,
act=act) for _ in range(num_blocks)
])
def forward(self, x):
x_short = self.short_conv(x)
x_main = self.main_conv(x)
x_main = self.blocks(x_main)
x_final = paddle.concat((x_main, x_short), axis=1)
return self.final_conv(x_final)
class Channel_T(nn.Layer):
def __init__(self,
in_channels=[116, 232, 464],
out_channels=96,
act="leaky_relu"):
super(Channel_T, self).__init__()
self.convs = nn.LayerList()
for i in range(len(in_channels)):
self.convs.append(
ConvBNLayer(
in_channels[i], out_channels, 1, act=act))
def forward(self, x):
outs = [self.convs[i](x[i]) for i in range(len(x))]
return outs
@register
@serializable
class CSPPAN(nn.Layer):
"""Path Aggregation Network with CSP module.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
kernel_size (int): The conv2d kernel size of this Module.
num_features (int): Number of output features of CSPPAN module.
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1
use_depthwise (bool): Whether to depthwise separable convolution in
blocks. Default: True
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=5,
num_features=3,
num_csp_blocks=1,
use_depthwise=True,
act='hard_swish',
spatial_scales=[0.125, 0.0625, 0.03125]):
super(CSPPAN, self).__init__()
self.conv_t = Channel_T(in_channels, out_channels, act=act)
in_channels = [out_channels] * len(spatial_scales)
self.in_channels = in_channels
self.out_channels = out_channels
self.spatial_scales = spatial_scales
self.num_features = num_features
conv_func = DPModule if use_depthwise else ConvBNLayer
if self.num_features == 4:
self.first_top_conv = conv_func(
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
self.second_top_conv = conv_func(
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
self.spatial_scales.append(self.spatial_scales[-1] / 2)
# build top-down blocks
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.top_down_blocks = nn.LayerList()
for idx in range(len(in_channels) - 1, 0, -1):
self.top_down_blocks.append(
CSPLayer(
in_channels[idx - 1] * 2,
in_channels[idx - 1],
kernel_size=kernel_size,
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
act=act))
# build bottom-up blocks
self.downsamples = nn.LayerList()
self.bottom_up_blocks = nn.LayerList()
for idx in range(len(in_channels) - 1):
self.downsamples.append(
conv_func(
in_channels[idx],
in_channels[idx],
kernel_size=kernel_size,
stride=2,
act=act))
self.bottom_up_blocks.append(
CSPLayer(
in_channels[idx] * 2,
in_channels[idx + 1],
kernel_size=kernel_size,
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
act=act))
def forward(self, inputs):
"""
Args:
inputs (tuple[Tensor]): input features.
Returns:
tuple[Tensor]: CSPPAN features.
"""
assert len(inputs) == len(self.in_channels)
inputs = self.conv_t(inputs)
# top-down path
inner_outs = [inputs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = inputs[idx - 1]
upsample_feat = self.upsample(feat_heigh)
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
paddle.concat([upsample_feat, feat_low], 1))
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsamples[idx](feat_low)
out = self.bottom_up_blocks[idx](paddle.concat(
[downsample_feat, feat_height], 1))
outs.append(out)
top_features = None
if self.num_features == 4:
top_features = self.first_top_conv(inputs[-1])
top_features = top_features + self.second_top_conv(outs[-1])
outs.append(top_features)
return tuple(outs)
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channels, stride=1. / s)
for s in self.spatial_scales
]
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
Python
1
https://gitee.com/atrium_idlers/PaddleDetection_1.git
git@gitee.com:atrium_idlers/PaddleDetection_1.git
atrium_idlers
PaddleDetection_1
PaddleDetection_1
release/2.5

搜索帮助