1 Star 0 Fork 165

ElonChung / Java-Review

forked from flatfish / Java-Review 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
Java-多线程-JUC-并发编程-基础.md 53.73 KB
一键复制 编辑 原始数据 按行查看 历史
icanci 提交于 2020-09-07 23:09 . :fire:更新文件夹

Java - 多线程 - JUC - 并发编程

1. 什么是JUC

源码+官方文档

1596169853395

2. 线程和进程

进程:一个程序。QQ.exe 程序的集合

线程:进程执行的一个更小的单位

一个进程往往可以包含多个线程,至少包含一个

Java默认有个线程,main线程和GC线程

线程:来了一个进程Typora,我可以写字,然后过了一会可以自动保存(线程负责)

Java无法直接操作硬件,因为她是运行在JVM上的,其实是通过C/C++调用的硬件

并发和并行

并发:多个人抢一个资源

  • CPU 一核,模拟出来多条线程,快速交替

并行:多个人一起走

  • CPU 多核 ,多个线程同时指向
public class Test {
    public static void main(String[] args) {
        // 获取 CPU 的核数
        // CPU密集型 IO密集型
        System.out.println(Runtime.getRuntime().availableProcessors());
    }
}

并发编程的本质:充分利用CPU的资源

Java线程有几个状态

创建 、就绪、运行、阻塞、死亡

public enum State {
    // 新生
    NEW,
	// 运行
    RUNNABLE,
	// 阻塞
    BLOCKED,
	// 等待
    WAITING,
	// 超时等待
    TIMED_WAITING,
	// 挂机,终止
    TERMINATED;
}

wait/sleep的区别

  • 来自不同的类
    • wait -> Object
    • sleep -> Thread
  • 是否会释放锁
    • wait会释放锁
    • sleep不回释放锁
  • 使用的范围不同
    • wait必须在同步代码块中
    • sleep在任何地方都可以
  • 释放需要捕获异常
    • wait不需要
    • sleep需要捕获异常

3. Lock锁

传统的锁:synchronized

真正的多线程开发,线程就是一个单独的资源类,没有任何的附属操作

其中包含属性和方法

Lock接口

1596344399950

**Lock的三个实现类 **

  • ReetrantLock 可重入锁
  • ReetrantReadWriteLock.ReadLock
  • ReetrantReadWriteLock.WriteLock

1596344471676

传统的方式

public class SaleTicketDemo01 {
    public static void main(String[] args) {
        Ticket ticket = new Ticket();
        new Thread(() -> {
            for (int i = 0; i < 40; i++) {
                ticket.sale();
            }
        }, "A").start();
        new Thread(() -> {
            for (int i = 0; i < 70; i++) {
                ticket.sale();
            }
        }, "B").start();
        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                ticket.sale();
            }
        }, "C").start();
    }
}

class Ticket {
    private int number = 50;

    // synchronized 本质就是锁
    public synchronized void sale() {
        if (number > 0) {
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + " sale " + number-- + " other " + number);
        }
    }
}

使用Lock锁

public class SaleTicketDemo01 {
    public static void main(String[] args) {
        Ticket2 ticket2 = new Ticket2();
        new Thread(() -> {
            for (int i = 0; i < 40; i++) {
                ticket2.sale();
            }
        }, "A").start();
        new Thread(() -> {
            for (int i = 0; i < 70; i++) {
                ticket2.sale();
            }
        }, "B").start();
        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                ticket2.sale();
            }
        }, "C").start();
    }
}

class Ticket2 {
    private int number = 50;
    private Lock lock = new ReentrantLock();

    public void sale() {
        lock.lock();
        try {
            if (number > 0) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName() + " sale " + number-- + " other " + number);
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

1596345280737

公平锁:十分公平,可以先来后到

非公平锁:不公平,要抢,可以插队(默认)

synchronized和Lock的区别

  • synchronized 内置的Java关键字。Lock是一个Java类
  • synchronized 无法判断锁的状态,Lock可以判断是否获取到了锁
  • synchronized 会自动释放锁,Lock必须手动释放锁,如果不释放锁,就会死锁
  • synchronized 线程1(获得锁 阻塞)、线程2(等待),Lock锁不一定会等待下去
  • synchronized 可重入锁,不可以中断的,非公平;Lock、可重入锁、可以判断锁、是否公平可以自己选择
  • synchronized 适合锁少量的代码,Lock适合锁大量的代码

锁是什么?如果判断锁的是谁?

4. 生产者和消费者

生产者消费者问题 synchronized 版本

/**
 * 线程之间的通信问题:生产者和消费者问题
 * <p>
 * 通知,等待唤醒
 * <p>
 * 线程交替执行 A B 操作同一个变量 num = 0
 * A num + 1
 * B num - 1
 */
public class A {
    public static void main(String[] args) {
        Data data = new Data();
        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "A").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "B").start();
    }
}

/**
 * 口诀:
 * 等待 - 业务 - 通知
 */
class Data {
    private int num = 0;

    // +1
    public synchronized void increment() throws InterruptedException {
        if (num != 0) {
            // 等待操作
            this.wait();
        }
        num++;
        System.out.println(Thread.currentThread().getName() + " 进入 increment => " + num);
        // 通知 +1 已经完成
        this.notifyAll();
    }

    // -1
    public synchronized void decrement() throws InterruptedException {
        if (num == 0) {
            // 等待操作
            this.wait();
        }
        num--;
        System.out.println(Thread.currentThread().getName() + " 进入 decrement => " + num);
        // 通知 -1 已经完成
        this.notifyAll();
    }
}

问题存在 A B C D 四个线程 就会出现虚假唤醒的行为

1596357453991

此时的代码应该使用 while 替换 if

/**
 * 线程之间的通信问题:生产者和消费者问题
 * 
 * 通知,等待唤醒
 * 
 * 线程交替执行 A B 操作同一个变量 num = 0
 * A num + 1
 * B num - 1
 */
public class A {
    public static void main(String[] args) {
        Data data = new Data();
        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "A").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "B").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "C").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "D").start();
    }
}

/**
 * 口诀:
 * 等待 - 业务 - 通知
 */
class Data {
    private int num = 0;

    // +1
    public synchronized void increment() throws InterruptedException {
        while (num != 0) {
            // 等待操作
            this.wait();
        }
        num++;
        System.out.println(Thread.currentThread().getName() + " 进入 increment => " + num);
        // 通知 +1 已经完成
        this.notifyAll();
    }

    // -1
    public synchronized void decrement() throws InterruptedException {
        while (num == 0) {
            // 等待操作
            this.wait();
        }
        num--;
        System.out.println(Thread.currentThread().getName() + " 进入 decrement => " + num);
        // 通知 -1 已经完成
        this.notifyAll();
    }
}

Juc版本的生产者和消费者的问题

1596358118835

代码实现

public class B {
    public static void main(String[] args) {
        Data2 data2 = new Data2();
        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data2.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "A").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data2.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "B").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data2.increment();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "C").start();

        new Thread(() -> {
            for (int i = 0; i < 20; i++) {
                try {
                    data2.decrement();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "D").start();
    }
}

/**
 * 口诀:
 * 等待 - 业务 - 通知
 */
class Data2 {
    private int num = 0;
    Lock lock = new ReentrantLock();
    Condition condition = lock.newCondition();

    // +1
    public void increment() throws InterruptedException {
        lock.lock();
        try {
            while (num != 0) {
                // 等待操作
                condition.await();
            }
            num++;
            System.out.println(Thread.currentThread().getName() + " 进入 increment => " + num);
            // 通知 +1 已经完成
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    // -1
    public void decrement() throws InterruptedException {
        lock.lock();
        try {
            while (num == 0) {
                // 等待操作
                condition.await();
            }
            num--;
            System.out.println(Thread.currentThread().getName() + " 进入 decrement => " + num);
            // 通知 -1 已经完成
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

任何一个新的技术,绝对不是仅仅覆盖了原来的技术,优势和补充

Condition 精准的通知和唤醒 上述的代码没有实现精准通知和唤醒,它是无序的

编写一段代码,顺序打印十次 A B C

/**
 * A 执行完调用 B B 执行完调用C
 */
public class C {
    public static void main(String[] args) {
        Data3 data3 = new Data3();
        new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                try {
                    data3.printA();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "A").start();
        new Thread(() -> {
            for (int i = 0; i < 13; i++) {
                try {
                    data3.printB();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "B").start();
        new Thread(() -> {
            for (int i = 0; i < 12; i++) {
                try {
                    data3.printC();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "C").start();
    }
}

class Data3 {
    private Lock lock = new ReentrantLock();
    Condition condition = lock.newCondition();
    private static int index = 0;

    public synchronized void printA() throws InterruptedException {
        while (index != 0) {
            this.wait();
        }
        System.out.println("Data3.printA");
        index = 1;
        this.notifyAll();
    }

    public synchronized void printB() throws InterruptedException {
        while (index != 1) {
            this.wait();
        }
        System.out.println("Data3.printB");
        index = 2;
        this.notifyAll();
    }

    public synchronized void printC() throws InterruptedException {
        while (index != 2) {
            this.wait();
        }
        System.out.println("Data3.printC");
        index = 0;
        this.notifyAll();
    }
}

代码测试:

public class D {
    public static void main(String[] args) {
        Data4 data4 = new Data4();
        new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                try {
                    data4.printA();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "A").start();
        new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                try {
                    data4.printB();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "B").start();
        new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                try {
                    data4.printC();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "C").start();
    }
}

class Data4 {
    private Lock lock = new ReentrantLock();
    Condition condition1 = lock.newCondition();
    Condition condition2 = lock.newCondition();
    Condition condition3 = lock.newCondition();

    // 1 A 2B 3C
    private int num = 1;

    public void printA() throws InterruptedException {
        lock.lock();
        try {
            // 业务代码 判断,执行 通知
            while (num != 1) {
                condition1.await();
            }
            System.out.println("AAAAA");
            num = 2;
            condition2.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void printB() throws InterruptedException {
        lock.lock();
        try {
            // 业务代码 判断,执行 通知
            while (num != 2) {
                condition2.await();
            }
            System.out.println("BBBBB");
            num = 3;
            condition3.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void printC() throws InterruptedException {
        lock.lock();
        try {
            // 业务代码 判断,执行 通知
            while (num != 3) {
                condition3.await();
            }
            System.out.println("CCCCC");
            num = 1;
            condition1.signal();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

5. 8锁的现象

如何判断锁的是谁。永远的知道什么锁,锁到底是谁的锁!对象,Class

/**
 * 8锁,就是关于锁的8个问题
 * 1、标准情况下 两个线程先打印 发短信还是打电话 1/发短信 2/打电话
 * 2、sendMessage 延迟4秒 两个线程先打印 发短信还是打电话  1/发短信 2/打电话
 */
public class Test1 {
    public static void main(String[] args) throws Exception {
        Phone phone = new Phone();
        // 锁的存在
        new Thread(() -> {
            phone.sendMessage();
        }, "A").start();
        TimeUnit.SECONDS.sleep(1);
        new Thread(() -> {
            phone.callMessage();
        }, "B").start();
    }
}

class Phone {
    // synchronized 锁的对象是方法的调用者
    // 两个方法用的是同一把锁,谁先拿到谁先执行
    // 而且synchronized 是独占锁
    public synchronized void sendMessage()  {
        try {
            TimeUnit.SECONDS.sleep(4);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("Phone.sendMessage");
    }

    public synchronized void callMessage() {
        System.out.println("Phone.callMessage");
    }
}
/**
 * 3、增加了一个普通方法 先打印sendMessage还是hello 1/sendMessage 2/hello
 * 4、两个对象,两个同步方法,发短信还是电话  1/callMessage 2/sendMessage 不同的锁,对象不一样,就看执行的时间
 */
public class Test2 {
    public static void main(String[] args) throws Exception {
        // 两个对象
        Phone2 phone1 = new Phone2();
        Phone2 phone2 = new Phone2();
        // 锁的存在
        new Thread(() -> {
            phone1.sendMessage();
        }, "A").start();
        TimeUnit.SECONDS.sleep(1);
        new Thread(() -> {
            phone2.callMessage();
        }, "B").start();
    }
}

class Phone2 {
    // synchronized 锁的对象是方法的调用者
    // 两个方法用的是同一把锁,谁先拿到谁先执行
    // 而且synchronized 是独占锁
    public synchronized void sendMessage()  {
        try {
            TimeUnit.SECONDS.sleep(4);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("Phone.sendMessage");
    }

    public synchronized void callMessage() {
        System.out.println("Phone.callMessage");
    }

    // 这里没有锁,不受锁的影响
    public void hello() {
        System.out.println("Phone2.hello");
    }
}
/**
 * 5、增加两个静态同步方法 只有一个对象 1/发短信 2/打电话
 * 6、增加两个静态同步方法 2个对象 1/发短信 2/打电话
 */
public class Test3 {
    public static void main(String[] args) throws Exception {
        // 两个对象
        Phone3 phone1 = new Phone3();
        Phone3 phone2 = new Phone3();
        // 锁的存在
        new Thread(() -> {
            phone1.sendMessage();
        }, "A").start();
        TimeUnit.SECONDS.sleep(1);
        new Thread(() -> {
            phone2.callMessage();
        }, "B").start();
    }
}

// Phone3 唯一的一个 class 对象
class Phone3 {
    // synchronized 锁的对象是方法的调用者
    // static 静态方法
    // 类一加载就有了,锁的是Class对象
    // 所以此时两个对象是同一把锁,也就是Class,
    public static synchronized void sendMessage() {
        try {
            TimeUnit.SECONDS.sleep(4);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("Phone.sendMessage");
    }

    public static synchronized void callMessage() {
        System.out.println("Phone.callMessage");
    }

}
/**
 * 7. 一个静态的同步方法,1个普通的同步方法,1个对象,先打印发短信还是打电话?
 * 8、一个静态的同步方法,1个普通的同步方法,2个对象,先打印发短信还是打电话?
 */
public class Test4 {
    public static void main(String[] args) throws Exception {
        // 两个对象
        Phone4 phone1 = new Phone4();
        Phone4 phone2 = new Phone4();
        // 锁的存在
        new Thread(() -> {
            phone1.sendMessage();
        }, "A").start();
        TimeUnit.SECONDS.sleep(1);
        new Thread(() -> {
            phone2.callMessage();
        }, "B").start();
    }
}

class Phone4 {

    // 锁的是Class
    public static synchronized void sendMessage() {
        try {
            TimeUnit.SECONDS.sleep(4);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("Phone.sendMessage");
    }

    // 锁的是对象
    public synchronized void callMessage() {
        System.out.println("Phone.callMessage");
    }
}

小结

new this 具体的一个手机

static Class 唯一的一个模板

6. 集合类不安全

List

并发修改异常

/**
 * java.lang.UnsupportedOperationException 并发修改异常
 *
 */
public class ListTest {
    public static void main(String[] args) {
        // 并发下 ArrayList是不安全的
        // 解决方案:
        // List<String> list = new Vector<>();
        // List<String> list1 = Collections.synchronizedList(new ArrayList<>());
        // CopyOnWriteArrayList<String> list1 = new CopyOnWriteArrayList<>();

        // CopyOnWrite 写入时复制 COW思想 计算机程序设计领域的一种优化策略
        // 多个线程调用的时候,list 读取的时候,固定的,写入/ 覆盖
        // 在写入的时候避免覆盖,造成数据问题
        // CopyOnWriteArrayList 比 Vector 强在哪里?使用 Lock锁
        CopyOnWriteArrayList<String> list1 = new CopyOnWriteArrayList<>();
        for (int i = 0; i < 30; i++) {
            new Thread(() -> {
                list1.add(UUID.randomUUID().toString().substring(0, 5));
                System.out.println(list1);
            }, String.valueOf(i)).start();
        }
    }
}
/**
 * 同理可得 java.util.ConcurrentModificationException
 * 解决方案1: Set<String> set = Collections.synchronizedSet(new HashSet<String>());
 * 解决方案2:CopyOnWriteArraySet<String> set = new CopyOnWriteArraySet<>();
 */
public class SetTest {
    public static void main(String[] args) {
//        HashSet<String> set = new HashSet<>();
//        Set<String> set = Collections.synchronizedSet(new HashSet<String>());
        CopyOnWriteArraySet<String> set = new CopyOnWriteArraySet<>();
        for (int i = 0; i < 30; i++) {
            new Thread(() -> {
                set.add(UUID.randomUUID().toString().substring(0, 4));
                System.out.println(set);
            }).start();
        }
    }
}

HashMap 线程不安全的

/**
 * java.util.ConcurrentModificationException
 */
public class MapTest {
    public static void main(String[] args) {
        // map 是这样使用的吗?
        //
        ConcurrentHashMap<String, String> map = new ConcurrentHashMap<>();
//        Map<String, String> map = new HashMap<>();
        for (int i = 0; i < 30; i++) {
            new Thread(() -> {
                map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0, 6));
                System.out.println(map);
            }).start();
        }
    }
}

7. Callable

1596413812838

1596415462269

  • 可以有返回值
  • 可以抛出异常
  • 方法不同 run()/call()

代码实现

public class CallableTest {

    public static void main(String[] args) throws Exception {
        // new Thread(new Runnbale()).start();
        // new Thread(new FutureTask<V>()).start();
        MyCallableTest myCallableTest = new MyCallableTest();
        // 适配类
        FutureTask<String> task = new FutureTask<>(myCallableTest);
        // 如果对象相同,结果会被缓存,提高效率
        new Thread(task,"A").start();
        new Thread(task,"B").start();
        // 获取返回结果
        // get 方法可能会有阻塞,因为要等待线程执行结束返回结果 将其放在最后
        // 异步通信来处理
        String res = task.get();
        System.out.println(res);
    }

}

class MyCallableTest implements Callable<String> {

    @Override
    public String call() throws Exception {
        System.out.println("call able ");
        return "hello world";
    }
}

细节

  • 有缓存
  • 可能需要等待,因返回的结果需要等待线程执行完毕

8. CountDownLatch、CyclicBarrier、Semaphore

CountDownLatch

1596416636425

/**
 * 计数器 -1
 */
public class CountDownLatchTest {
    public static void main(String[] args) throws Exception {
        // 总数是6 倒计时
        // 在必须要执行任务的时候 再使用
        CountDownLatch countDownLatch = new CountDownLatch(6);
        for (int i = 0; i < 6; i++) {
            new Thread(() -> {
                // 数量 -1
                System.out.println(Thread.currentThread().getName() + " GO !");
                countDownLatch.countDown();
            }, String.valueOf(i)).start();
        }
        // 等待计数器归零,然后再向下执行
        countDownLatch.await();
        System.out.println("Close door");
    }
}
  

原理:

  • countDownLatch.countDown() // 数量 -1
  • countDownLatch.await() // 等待计时器归零,然后再向下执行

每次有线程调用 countDown() 数量 -1 ,假设计时器变为0,countDownLatch.await() 就会被唤醒

CyclicBarrier

1596417663393

加法计数器

/**
 * 集齐7龙珠召唤神龙
 */
public class CyclicBarrierTest {
    public static void main(String[] args) {

        CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
            System.out.println("召唤神龙成功");
        });

        for (int i = 1; i <= 7; i++) {
            final int temp = i;
            new Thread(() -> {
                System.out.println(Thread.currentThread().getName() + temp);
                try {
                    cyclicBarrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}

Semaphore 信号量

1596418226742

public class SemaphoreTest {
    public static void main(String[] args) {
        // 线程数量:停车位 限流
        Semaphore semaphore = new Semaphore(3);
        for (int i = 0; i < 6; i++) {
            new Thread(() -> {
                try {
                    // semaphore.acquire(); 获得
                    semaphore.acquire();
                    System.out.println(Thread.currentThread().getName() + " 抢到车位");
                    TimeUnit.SECONDS.sleep(2);
                    // semaphore.release(); 释放
                    System.out.println(Thread.currentThread().getName() + " 抢到车位");
                    System.out.println(Thread.currentThread().getName() + " 离开车位");
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    semaphore.release();
                }
            }, String.valueOf(i + 1)).start();
        }
    }
}

原理:

  • semaphore.acquire(); 获得 假设如果已经满了,就等待,等待被释放为止
  • semaphore.release(); 释放 会将当前的信号量释放+1 然后唤醒等待的线程

作用:多个共享资源互斥的使用 并发限流,控制最大的线程数

9. 读写锁 ReadWriteLock

1596419878191

/**
 * 读写锁
 * 读 - 读
 * 读 - 写
 * 写 - 写
 */
public class ReadWriteLockTest {
    public static void main(String[] args) {
        MyCache2 myCache = new MyCache2();
        // 写入操作
        for (int i = 0; i < 140; i++) {
            final int temp = i;
            new Thread(() -> {
                myCache.put(temp + "", new Object());
            }, String.valueOf(i + " W")).start();
        }

        // 读取操作
        for (int i = 0; i < 140; i++) {
            final int temp = i;
            new Thread(() -> {
                myCache.get(temp + "");
            }, String.valueOf(i + " R")).start();
        }

    }
}

/**
 * 自定义缓存
 */
class MyCache {
    private volatile Map<String, Object> map = new HashMap<>();

    // 存  写
    public void put(String key, Object value) {
        System.out.println(Thread.currentThread().getName() + " put " + key);
        map.put(key, value);
        System.out.println(Thread.currentThread().getName() + " put ok");
    }

    // 取  读
    public void get(String key) {
        System.out.println(Thread.currentThread().getName() + " get " + key);
        Object o = map.get(key);
        System.out.println(Thread.currentThread().getName() + " get ok");
        System.out.println(o);
    }
}

/**
 * 自定义缓存2
 * 加锁的
 */
class MyCache2 {
    private volatile Map<String, Object> map = new HashMap<>();
    // 读写锁 更加细粒度的控制
    private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

    // 存  写 只希望通知是一个去读
    public void put(String key, Object value) {
        lock.writeLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + " put " + key);
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + " put ok");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.writeLock().unlock();
        }
    }

    // 取  读
    public void get(String key) {
        lock.readLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + " get " + key);
            Object o = map.get(key);
            System.out.println(Thread.currentThread().getName() + " get ok");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.readLock().unlock();
        }
    }
}

10. 阻塞队列

阻塞

队列

1596422491121

BlockingQueue

什么时候会使用阻塞队列:线程池,多线程并发原理

1596423209976

队列的使用

添加、移除

四组API

方式 抛出异常 有返回值,不抛出异常 阻塞异常 超时等待
添加 add(ele) offer(ele) put(ele) offer(ele,time,unit)
移除 remove() poll() take() poll(time,unit)
判断队列首部 element() peek() - -
  • 抛出异常
	/**
     * 抛出异常
     * java.lang.IllegalStateException: Queue full
     * java.util.NoSuchElementException
     */
public static void test1() {
    // 队列的大小
    ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
    System.out.println(blockingQueue.add("a"));
    System.out.println(blockingQueue.add("b"));
    System.out.println(blockingQueue.add("c"));
    System.out.println(blockingQueue.remove());
    System.out.println(blockingQueue.remove());
    System.out.println(blockingQueue.remove());
    System.out.println(blockingQueue.remove());
    System.out.println(blockingQueue.add("D"));
}
  • 不抛出异常
	/**
     * 不抛出异常
     * 添加 不抛出异常 返回 false
     * 没有元素可弹出,就返回 null
     */
public static void test2() {
    // 队列的大小
    ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
    System.out.println(blockingQueue.offer("a"));
    System.out.println(blockingQueue.offer("b"));
    System.out.println(blockingQueue.offer("c"));
    System.out.println(blockingQueue.offer("d"));

    System.out.println(blockingQueue.poll());
    System.out.println(blockingQueue.poll());
    System.out.println(blockingQueue.poll());
    System.out.println(blockingQueue.poll());
}
  • 阻塞异常
	/**
     * 等待 阻塞
     */
public static void test3() throws Exception {
    // 队列的大小
    ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
    // 一直阻塞
    blockingQueue.put("a");
    blockingQueue.put("b");
    blockingQueue.put("c");
    System.out.println(blockingQueue.take());
    System.out.println(blockingQueue.take());
    System.out.println(blockingQueue.take());
    System.out.println(blockingQueue.take());
}
  • 超时等待
	/**
     * 等待 超时退出
     */
public static void test4() throws Exception {
    // 队列的大小
    ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
    blockingQueue.offer("a");
    blockingQueue.offer("b");
    blockingQueue.offer("c");
    blockingQueue.offer("d", 2, TimeUnit.SECONDS);

    System.out.println(blockingQueue.poll(2, TimeUnit.SECONDS));
    System.out.println(blockingQueue.poll(2, TimeUnit.SECONDS));
    System.out.println(blockingQueue.poll(2, TimeUnit.SECONDS));
    System.out.println(blockingQueue.poll(2, TimeUnit.SECONDS));
}

SynchronousQueue:同步队列

  • 没有容量
  • 进去一个元素,必须等待取出来之后,才能往里放一个元素
/**
 * 同步队列
 *
 * 和其他的BlockingQueue 不一样,不能存储元素 
 * 放进去的必须取出来,也可以理解就只能放一个元素
 */
public class SynchronousQueueDemo {
    public static void main(String[] args) {
        SynchronousQueue<Object> sync = new SynchronousQueue<>();
        new Thread(() -> {
            try {
                System.out.println(Thread.currentThread().getName() + " put 1");
                sync.put("1");
                System.out.println(Thread.currentThread().getName() + " put 2");
                sync.put("2");
                System.out.println(Thread.currentThread().getName() + " put 3");
                sync.put("3");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName() + " 取出 " + sync.take());
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName() + " 取出 " + sync.take());
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName() + " 取出 " + sync.take());
            } catch (Exception e) {
                e.printStackTrace();
            }
        }).start();
    }
}

11. 线程池(十分重要)

线程池:三大方法、7大参数、4种拒绝策略

池化技术:就是为了

程序的运行本质:就是占用系统资源!优化资源的使用,所以就演变出来一种策略,就是池化技术

线程池、连接池、内存池、对象池

线程池的好处:

  • 降低资源的消耗
  • 提高响应的速度
  • 方便管理

线程可以复用、可以控制最大并发数、管理线程

线程池:三大方法

/**
 * 工具类 Executors
 */
public class Demo01 {
    public static void main(String[] args) {
        // 单个线程
		// ExecutorService service = Executors.newSingleThreadExecutor();

        // 可以伸缩的线程池
		// ExecutorService service = Executors.newCachedThreadPool();
        // 固定的线程池大小
        ExecutorService service = Executors.newFixedThreadPool(5);
        try {
            for (int i = 0; i < 100; i++) {
                service.execute(() -> {
                    System.out.println("Demo01.main " + Thread.currentThread().getName());
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            service.shutdown();
        }
        // 线程池用完 线程池结束 关闭线程池
    }
}

七大参数

// 单一线程
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}

// 可以伸缩的线程池
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

// 固定大小的线程池
public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

// 所有的本质

// ThreadPoolExecutor
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}

// ThreadPoolExecutor
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}
  • corePoolSize:核心线程池大小
  • maximumPoolSize:最大线程池大小
  • keepAliveTime:超时没人调用就会释放
  • unit:超时的单位
  • workQueue:阻塞队列
  • threadFactory:线程工厂
  • handler:拒绝策略

手动创建一个线程池

/**
 * 工具类 Executors
 * 异常 java.util.concurrent.RejectedExecutionException
 */
public class Demo02 {
    public static void main(String[] args) {
        // 单个线程
        ExecutorService service = new ThreadPoolExecutor(
                4,
                7,
                5,
                TimeUnit.SECONDS,
                new LinkedBlockingDeque<>(3),
                Executors.defaultThreadFactory(),
                // 满了 还有人进来 不处理这个人,抛出异常
                new ThreadPoolExecutor.AbortPolicy()
        );
        try {
            // 最大承载:Deque + MaxSize
            // 超过了最大承载,就报错 拒绝策略异常
            // java.util.concurrent.RejectedExecutionException
            for (int i = 0; i < 1000; i++) {
                service.execute(() -> {
                    System.out.println("Demo01.main " + Thread.currentThread().getName());
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            service.shutdown();
        }
        // 线程池用完 线程池结束 关闭线程池
    }
}

四种拒绝策略

1596440458523

  • AbortPolicy

    • 满了 还有人进来 不处理这个人,抛出异常
  • CallerRunsPolicy

    • 从哪儿来就回哪儿去
  • DiscardOldestPolicy

    • 队列满了,尝试和最早的竞争,竞争失败就没了,成功就上位了
  • DiscardPolicy

    • 队列满了,丢掉任务,不会抛出异常
  • 池的最大线程到底应该如何定义

    • CPU密集型 几核就定义为几,可以保证CPU数量

    • // 获取CPU的核数
      int num = Runtime.getRuntime().availableProcessors();
    • IO密集型 程序有很多任务,io十分占用资源

    • 大于 判断你程序中的十分耗IO的线程

12. 四大函数式接口(重点)

新时代的程序员:lambda表达式、函数式接口、链式接口、Stream流式计算

函数式接口,只有一个方法的接口

@FunctionalInterface
public interface Runnable {

    public abstract void run();
}

// 简化编程模型
// foreach(消费者类的函数式接口)

1596443495555

Function

1596443644698

代码测试

Function接口

/**
 * Function 函数式接口
 * 有一个 输入参数 一个输出
 * 只要是函数式接口,都可以使用 lambda 表达式简化
 */
public class Demo01 {
    public static void main(String[] args) {
        Function function = new Function<String, String>() {
            @Override
            public String apply(String s) {
                return s;
            }
        };
        Function function1 = x -> {
            return "324" + x;
        };
        Object apply = function1.apply("23");
        System.out.println(apply);
    }
}

Predicate 断定型接口:传入一个值,返回 false 或者 true

/**
 * Predicate<T> 传入一个对象,放回 true 或者 false
 */
public class Demo02 {
    public static void main(String[] args) {
        Predicate predicate = new Predicate<String>() {
            @Override
            public boolean test(String s) {
                if ("hello".equals(s)) {
                    return true;
                }
                return false;
            }
        };

        Predicate predicate2 = (x) -> {
            if ("hello".equals(x)) {
                return true;
            }
            return false;
        };

        System.out.println(predicate.test("hello"));
        System.out.println(predicate.test("hello 2orl"));
        System.out.println("--------------------");
        System.out.println(predicate2.test("hello"));
        System.out.println(predicate2.test("hello 2orl"));
    }
}

Consumer 消费者接口

/**
 * Consumer 消费型接口:只有输入 没有返回值
 */
public class Demo03 {
    public static void main(String[] args) {
        Consumer<String> consumer = o -> {
            System.out.println(o);
        };
        consumer.accept("o?o");
    }
}

Supplier 供给型接口

没有参数,只有返回值

/**
 * Supplier
 */
public class Demo04 {
    public static void main(String[] args) {
        Supplier<String> supplier = new Supplier<String>() {
            @Override
            public String get() {
                return "hello world";
            }
        };
        Supplier<String> supplier2 = () -> {
            return "???";
        };

        System.out.println(supplier.get());
        System.out.println(supplier2.get());
    }
}

13. Stream流式计算

什么是Stream流式计算

大数据:存储+计算

集合、MySQL存储本质就是存储东西的

计算都应该交给流来做

@Data
@AllArgsConstructor
@NoArgsConstructor
public class User {
    private int id;
    private String name;
    private int age;
}

/**
 * 题目要求:一分钟完成此题,只能用一行代码实现
 * 现在有5个用户,需要进行筛选
 * <p>
 * 1、ID 必须是偶数
 * 2、年龄必须大于23岁
 * 3、用户名转为大写字母
 * 4、用户名字母倒着排序
 * 5、只输出一个用户
 */
public class Test {
    public static void main(String[] args) {
        User u1 = new User(1, "a", 21);
        User u2 = new User(2, "b", 22);
        User u3 = new User(3, "c", 23);
        User u4 = new User(4, "d", 24);
        User u5 = new User(6, "e", 25);
        // 集合就是存储
        List<User> users = Arrays.asList(u1, u2, u3, u4, u5);
        // 计算交给流
        // 链式编程
        users
                .stream()
                .filter((user) -> {
                    return (user.getId() & 1) == 0;
                })
                .filter((user) -> {
                    return user.getAge() > 23;
                })
                .map((user) -> {
                    return user.getName().toUpperCase();
                })
                .sorted((user1, user2) -> {
                    return user2.compareTo(user1);
                })
                .limit(1)
                .forEach(System.out::println);
    }
}

14. 分支合并(ForkJoin)

什么是 ForkJoin

ForkJoin 在JDK1.7,并行执行任务 提高效率

大数据:Map reduce (把大任务划分为小任务)

1596451061641

特点:

  • 工作窃取
  • 维护的都是双端队列

1596451142766

ForkJoin

1596451784570


/**
 * 求和计算的任务、
 * 如何使用 forkJoin
 * 1、forkjoinpool 通过它来执行
 * 2、计算任务 execute(ForkJoinTask<?> task)
 * 3、计算类必须继承 ForkJoinTest
 */
public class ForkJoinDemo extends RecursiveTask<Long> {

    private Long start;
    private Long end;

    // 临界值
    private long temp = 1000L;

    public ForkJoinDemo(long start, long end) {
        this.start = start;
        this.end = end;
    }

    // 计算方法

    @Override
    protected Long compute() {
        Long sum = 0L;
        if ((end - start) < temp) {
            for (Long i = start; i <= end; i++) {
                sum += i;
            }
            return sum;
        } else {
            // 分支合并计算
            long middle = (start + end) / 2;
            ForkJoinDemo forkJoin1 = new ForkJoinDemo(start, middle);
            // 拆分任务 把任务压入线程队列
            forkJoin1.fork();
            ForkJoinDemo forkJoin2 = new ForkJoinDemo(middle + 1, end);
            // 拆分任务 把任务压入线程队列
            forkJoin2.fork();
            return forkJoin1.join() + forkJoin2.join();
        }
    }
}

public class ForkJoinTest {
    public static void main(String[] args) {
        test1();
        test2();
        test3();
    }

    /**
     * 普通程序员
     * <p>
     * sum = 500000000500000000 时间:7134 ms
     */
    public static void test1() {
        long start = System.currentTimeMillis();
        Long sum = 0L;
        for (Long i = 1L; i <= 10_0000_0000; i++) {
            sum += i;
        }
        long end = System.currentTimeMillis();
        System.out.println("sum = " + sum + " 时间:" + (end - start) + " ms");
    }

    /**
     * 中级程序员
     * <p>
     * sum = 500000000500000000 时间:3859 ms
     */
    public static void test2() {
        long start = System.currentTimeMillis();
//        ForkJoinPool forkJoinPool = new ForkJoinPool();
        ForkJoinDemo forkJoinDemo = new ForkJoinDemo(1, 10_0000_0000);
//        forkJoinPool.execute(forkJoinDemo);
//        Long sum = 0L;

         Long sum = forkJoinDemo.compute();
//
//        try {
//            sum = forkJoinDemo.get();
//        } catch (InterruptedException e) {
//            e.printStackTrace();
//        } catch (ExecutionException e) {
//            e.printStackTrace();
//        }
        long end = System.currentTimeMillis();
        System.out.println("sum = " + sum + " 时间:" + (end - start) + " ms");

    }

    /**
     * 高级程序员
     *
     * sum = 500000000500000000 时间:830 ms
     */
    public static void test3() {
        long start = System.currentTimeMillis();
        // Stream 并行流
        long sum = LongStream
                .rangeClosed(0L, 10_0000_0000L)
                .parallel()
                .reduce(0, Long::sum);
        long end = System.currentTimeMillis();
        System.out.println("sum = " + sum + " 时间:" + (end - start) + " ms");

    }
}

15. 异步回调

Future

public class Demo01 {
    public static void main(String[] args) {
        try {
            // 发起一个请求
            // 没有返回值的异步回调 runAsync
            // 有返回值的异步回调 supplyAsync
            CompletableFuture<Void> voidCompletableFuture = CompletableFuture.runAsync(() -> {
                try {
                    TimeUnit.SECONDS.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("???");
            });
            System.out.println(111);
            System.out.println(voidCompletableFuture.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
public class Demo02 {
    public static void main(String[] args) {
        CompletableFuture<String> stringCompletableFuture = CompletableFuture.supplyAsync(() -> {
            int i = 1 / 0;
            return "???";
        });
        try {
            System.out.println(stringCompletableFuture.whenComplete((t, u) -> {
                System.out.println(t + " " + u);
            }).exceptionally((e) -> {
                e.printStackTrace();
                return "exception";
            }).get());
            String s = stringCompletableFuture.get();
            System.out.println(s);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

16. JMM

8种操作

1596455822906

17. volatile

  • 在下一篇详细讲解

18. 深入理解单例模式

// 源码

public enum Single {
    INSTANCE;

    public static Single getInstance() {
        return INSTANCE;
    }
}

class Test {
    public static void main(String[] args) throws Exception {
        System.out.println(Single.getInstance());
        System.out.println(Single.INSTANCE);
        Constructor<Single> constructor = Single.class.getConstructor(null);
        constructor.setAccessible(true);
        /**
         * 说明 枚举没有这个构造方法 IDEA 骗人了
         *
         * Exception in thread "main"
         * java.lang.NoSuchMethodException: cn.icanci.unsafe.Single.<init>()
         *
         * public enum Single {
         *     INSTANCE;
         *     private Single() {
         *     }
         *     public static Single getInstance() {
         *         return INSTANCE;
         *     }
         * }
         *
         *
         * 枚举不能创建对象
         *
         *  if ((clazz.getModifiers() & Modifier.ENUM) != 0)
         *             throw new IllegalArgumentException("Cannot reflectively create enum objects");
         */

        Single single = constructor.newInstance();
        System.out.println(single);
    }
}
// 字节码

package cn.icanci.unsafe;

public enum Single
{
  INSTANCE;
  
  private Single() {}
  
  public static Single getInstance()
  {
    return INSTANCE;
  }
}
// 反编译之后的文件
package cn.icanci.unsafe;


public final class Single extends Enum
{

    public static Single[] values()
    {
        return (Single[])$VALUES.clone();
    }

    public static Single valueOf(String name)
    {
        return (Single)Enum.valueOf(cn/icanci/unsafe/Single, name);
    }

    private Single(String s, int i)
    {
        super(s, i);
    }

    public static Single getInstance()
    {
        return INSTANCE;
    }

    public static final Single INSTANCE;
    private static final Single $VALUES[];

    static 
    {
        INSTANCE = new Single("INSTANCE", 0);
        $VALUES = (new Single[] {
            INSTANCE
        });
    }
}

1596459343071

public enum Single {
    INSTANCE;

    public static Single getInstance() {
        return INSTANCE;
    }
}

class Test {
    public static void main(String[] args) throws Exception {
        System.out.println(Single.getInstance());
        System.out.println(Single.INSTANCE);
        Constructor<Single> constructor = Single.class.getDeclaredConstructor(String.class,int.class);
        constructor.setAccessible(true);
        /*
         * 枚举不能创建对象
         *
         *  if ((clazz.getModifiers() & Modifier.ENUM) != 0)
         *             throw new IllegalArgumentException("Cannot reflectively create enum objects");
         */

        Single single = constructor.newInstance();
        System.out.println(single);
    }
}


// Exception in thread "main" java.lang.IllegalArgumentException: Cannot reflectively create enum object at java.lang.reflect.Constructor.newInstance(Constructor.java:417)

19.锁

public class DeadLockDemo {
    public static void main(String[] args) {
        String lockA = "lockA";
        String lockB = "lockB";
        MyThread myThread1 = new MyThread(lockA,lockB);
        MyThread myThread2 = new MyThread(lockB,lockA);
        new Thread(myThread1).start();
        new Thread(myThread2).start();
    }

}

class MyThread implements Runnable {

    private String lockA;
    private String lockB;

    public MyThread(String lockA, String lockB) {
        this.lockA = lockA;
        this.lockB = lockB;
    }

    @Override
    public void run() {
        synchronized (lockA) {
            System.out.println(Thread.currentThread().getName() + "lock:" + lockA + " => " + lockB);
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (lockB) {
                System.out.println(Thread.currentThread().getName() + "lock:" + lockB + " => " + lockA);
            }
        }
    }
}
  • jps -l 定位进程号

1596501000742

  • 使用 jstack 进程号查看进程信息

1596501430578

面试中,排除问题

  • 日志
  • 堆栈
1
https://gitee.com/elonchung/Java-Review.git
git@gitee.com:elonchung/Java-Review.git
elonchung
Java-Review
Java-Review
master

搜索帮助