Fetch the repository succeeded.
This action will force synchronization from cungudafa/hand-keras-yolo3-recognize, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv
# return_128d_features() 获取某张图像的128D特征
# compute_the_mean() 计算128D特征均值
from cv2 import cv2 as cv2
import os
import csv
import numpy as np
import time
from pose_hand import getImgInfo
from yolo import YOLO
from pose.coco import general_coco_model
# ----------------------------------------------------------------------------------
# 第一步 读取标签Y和图片路径X
# ----------------------------------------------------------------------------------
X = [] # 定义图像名称
Y = [] # 定义图像分类类标
# Z = [] #定义图像像素
path = 'D:/myworkspace/dataset/My_test/dataset/test'
for idx, labelname in enumerate(os.listdir(path)):
if ".txt" not in labelname:
f = os.path.join(path, labelname)
for i, imgname in enumerate(os.listdir(f)):
imgpath = os.path.join(f, imgname)
X.append(imgpath)
Y.append(labelname)
X = np.array(X)
Y = np.array(Y)
# ----------------------------------------------------------------------------------
# 第二步 识别infolist
# ----------------------------------------------------------------------------------
# coco
modelpath = "model/"
start = time.time()
pose_model = general_coco_model(modelpath) # 1.加载模型
print("[INFO]Pose Model loads time: ", time.time() - start)
# yolo
start = time.time()
_yolo = YOLO() # 1.加载模型
print("[INFO]yolo Model loads time: ", time.time() - start)
infolist = []
for i in X:
hist = getImgInfo(i, pose_model, _yolo) # 识别
infolist.append(hist)
# ----------------------------------------------------------------------------------
# 第三步 存储信息docs/feature/features_all.csv
# ----------------------------------------------------------------------------------
# 路径存储到txt
orb = open('D:/myworkspace/dataset/My_test/bagofwords/y_train.txt', 'w')
for i, img_path in enumerate(X):
orb.write(img_path)
#orb.write('\n'+str(info)+str(infolist[i]))
orb.close()
# 特征存储到 csv
with open("docs/feature/features_all.csv", "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for i in infolist:
writer.writerow(i)
print("所有录入手语特征数据存入 / Save all the features of sign registered into: docs/feature/features_all.csv")
Sign in for post a comment
Comment ( 0 )