Needle Steering Software from Stanford University CHARM Lab
Needle Steering Software from Stanford University CHARM Lab
MATLAB Analysis Pipeline that takes raw polarimetry data, computes Mueller Matrices and various metrics, and then performs stats on these metrics.
Retina blood vessel segmentation with a convolutional neural network
One of the first steps in automatic fundus image analysis is the segmentation of the retinal vasculature, which provides valuable information related to several diseases. In this work, we present an extensive description and evaluation of our method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. This task remains a challenge largely due to the desired structures being thin and elongated, a setting that performs particularly poorly using standard segmentation priors, such as a Potts model or total variation. We overcome this difficulty by using a conditional random field model with more expressive potentials, taking advantage of recent results enabling inference of fully connected models almost in real-time. Parameters of the method are learned automatically using a structured output support vector machine, a supervised technique widely used for structured prediction in a number of machine learning applications. The evaluation of our method is performed both quantitatively and qualitatively on DRIVE, STARE, CHASEDB1 and HRF, showing its ability to deal with different types of images and outperforming other techniques, trained using state of the art features.
In this work, we present an extensive description and evaluation of our method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Standard segmentation priors such as a Potts model or total variation usually fail when dealing with thin and elongated structures. We overcome this difficulty by using a conditional random field model with more expressive potentials, taking advantage of recent results enabling inference of fully connected models almost in real-time. Parameters of the method are learned automatically using a structured output support vector machine, a supervised technique widely used for structured prediction in a number of machine learning applications. Our method, trained with state of the art features, is evaluated both quantitatively and qualitatively on four publicly available data sets: DRIVE, STARE, CHASEDB1 and HRF. Additionally, a quantitative comparison with respect to other strategies is included. The experimental results show that this approach outperforms other techniques when evaluated in terms of sensitivity, F1-score, G-mean and Matthews correlation coefficient. Additionally, it was observed that the fully connected model is able to better distinguish the desired structures than the local neighborhood based approach. Results suggest that this method is suitable for the task of segmenting elongated structures, a feature that can be exploited to contribute with other medical and biological applications.
Contributions last year: 0
Max continuous contributions: 0
Recent contributions: 0
Commits, issues, and pull requests will appear on your contribution graph. Only when the email address used for the commits in local configuration is associated with your GitOSC account, the commits' contribution will be counted.