本项目曾冲到全球第一,干货集锦见本页面最底部,另完整精致的纸质版《编程之法:面试和算法心得》已在京东/当当上销售
本项目曾冲到全球第一,干货集锦见本页面最底部,另完整精致的纸质版《编程之法:面试和算法心得》已在京东/当当上销售
这是一个Kalman Filter的程序,内含状态量为标量和二维矢量的C程序实现
Matlab/Simulink implementation for autonomous obstacle avoidance and path planning for a UGV.
Matlab code to generate steering and speed command for an autonomous vehicle to follow a predefined path
About this course: Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
Contributions last year: 0
Max continuous contributions: 0
Recent contributions: 0
Commits, issues, and pull requests will appear on your contribution graph. Only when the email address used for the commits in local configuration is associated with your GitOSC account, the commits' contribution will be counted.