1 Star 0 Fork 0

Kyle / soundtouch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
LGPL-2.1

SoundTouch audio processing library v1.9.2

SoundTouch library Copyright © Olli Parviainen 2001-2015

  1. Introduction

SoundTouch is an open-source audio processing library that allows changing the sound tempo, pitch and playback rate parameters independently from each other, i.e.:

Sound tempo can be increased or decreased while maintaining the original pitch Sound pitch can be increased or decreased while maintaining the original tempo Change playback rate that affects both tempo and pitch at the same time Choose any combination of tempo/pitch/rate 1.1 Contact information

Author email: oparviai 'at' iki.fi

SoundTouch WWW page: http://soundtouch.surina.net

  1. Compiling SoundTouch

Before compiling, notice that you can choose the sample data format if it's desirable to use floating point sample data instead of 16bit integers. See section "sample data format" for more information.

Also notice that SoundTouch can use OpenMP instructions for parallel computation to accelerate the runtime processing speed in multi-core systems, however, these improvements need to be separately enabled before compiling. See OpenMP notes in Chapter 3 below.

2.1. Building in Microsoft Windows

Project files for Microsoft Visual C++ are supplied with the source code package. Go to Microsoft WWW page to download Microsoft Visual Studio Express version for free.

To build the binaries with Visual C++ compiler, either run "make-win.bat" script, or open the appropriate project files in source code directories with Visual Studio. The final executable will appear under the "SoundTouch\bin" directory. If using the Visual Studio IDE instead of the make-win.bat script, directories bin and lib may need to be created manually to the SoundTouch package root for the final executables. The make-win.bat script creates these directories automatically.

OpenMP NOTE: If activating the OpenMP parallel computing in the compilation, the target program will require additional vcomp dll library to properly run. In Visual C++ 9.0 these libraries can be found in the following folders.

x86 32bit: C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\redist\x86\Microsoft.VC90.OPENMP\vcomp90.dll x64 64bit: C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\redist\amd64\Microsoft.VC90.OPENMP\vcomp90.dll In Visual Studio 2008, a SP1 version may be required for these libraries. In other VC++ versions the required library will be expectedly found in similar "redist" location.

Notice that as minor demonstration of a "dll hell" phenomenon both the 32-bit and 64-bit version of vcomp90.dll have the same filename but different contents, thus choose the proper version to allow the program start.

2.2. Building in Gnu platforms

The SoundTouch library compiles in practically any platform supporting GNU compiler (GCC) tools. SoundTouch requires GCC version 4.3 or later.

To build and install the binaries, run the following commands in /soundtouch directory:

./bootstrap - Creates "configure" file with local autoconf/automake toolset. ./configure - Configures the SoundTouch package for the local environment. Notice that "configure" file is not available before running the "./bootstrap" command as above. make - Builds the SoundTouch library & SoundStretch utility. You can optionally add "-j" switch after "make" to speed up the compilation in multi-core systems.

make install - Installs the SoundTouch & BPM libraries to /usr/local/lib and SoundStretch utility to /usr/local/bin. Please notice that 'root' privileges may be required to install the binaries to the destination locations.

2.2.1 Required GNU tools

Bash shell, GNU C++ compiler, libtool, autoconf and automake tools are required for compiling the SoundTouch library. These are usually included with the GNU/Linux distribution, but if not, install these packages first. For example, Ubuntu Linux can acquire and install these with the following command:

sudo apt-get install automake autoconf libtool build-essential 2.2.2 Problems with GCC compiler compatibility

At the release time the SoundTouch package has been tested to compile in GNU/Linux platform. However, If you have problems getting the SoundTouch library compiled, try disabling optimizations that are specific for x86 processors by running ./configure script with switch

--enable-x86-optimizations=no Alternatively, if you don't use GNU Configure system, edit file "include/STTypes.h" directly and remove the following definition: #define SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS 1 2.2.3 Compiling Shared Library / DLL version in Cygwin

The GNU compilation does not automatically create a shared-library version of SoundTouch (.so or .dll). If such is desired, then you can create it as follows after running the usual compilation:

g++ -shared -static -DDLL_EXPORTS -I../../include -o SoundTouch.dll
SoundTouchDLL.cpp ../SoundTouch/.libs/libSoundTouch.a sstrip SoundTouch.dll 2.1. Building in Android

Android compilation instructions are within the source code package, see file "source/Android-lib/README-SoundTouch-Android.html" in the source code package.

The Android compilation automatically builds separate .so library binaries for ARM, X86 and MIPS processor architectures. For optimal device support, include all these .so library binaries into the Android .apk application package, so the target Android device can automatically choose the proper library binary version to use.

The source/Android-lib folder includes also an Android example application that processes WAV audio files using SoundTouch library in Android devices.

  1. About implementation & Usage tips

3.1. Supported sample data formats

The sample data format can be chosen between 16bit signed integer and 32bit floating point values. The default is 32bit floating point format, which will also provide slightly better sound quality over the integer format.

In Windows environment, the sample data format is chosen in file "STTypes.h" by choosing one of the following defines:

#define SOUNDTOUCH_INTEGER_SAMPLES for 16bit signed integer #define SOUNDTOUCH_FLOAT_SAMPLES for 32bit floating point In GNU environment, the floating sample format is used by default, but integer sample format can be chosen by giving the following switch to the configure script:

./configure --enable-integer-samples The sample data can have either single (mono) or double (stereo) audio channel. Stereo data is interleaved so that every other data value is for left channel and every second for right channel. Notice that while it'd be possible in theory to process stereo sound as two separate mono channels, this isn't recommended because processing the channels separately would result in losing the phase coherency between the channels, which consequently would ruin the stereo effect.

Sample rates between 8000-48000H are supported.

3.2. Processing latency

The processing and latency constraints of the SoundTouch library are:

Input/output processing latency for the SoundTouch processor is around 100 ms. This is when time-stretching is used. If the rate transposing effect alone is used, the latency requirement is much shorter, see section 'About algorithms'. Processing CD-quality sound (16bit stereo sound with 44100H sample rate) in real-time or faster is possible starting from processors equivalent to Intel Pentium 133Mh or better, if using the "quick" processing algorithm. If not using the "quick" mode or if floating point sample data are being used, several times more CPU power is typically required. 3.3. About algorithms

SoundTouch provides three seemingly independent effects: tempo, pitch and playback rate control. These three controls are implemented as combination of two primary effects, sample rate transposing and time-stretching.

Sample rate transposing affects both the audio stream duration and pitch. It's implemented simply by converting the original audio sample stream to the desired duration by interpolating from the original audio samples. In SoundTouch, linear interpolation with anti-alias filtering is used. Theoretically a higher-order interpolation provide better result than 1st order linear interpolation, but in audio application linear interpolation together with anti-alias filtering performs subjectively about as well as higher-order filtering would.

Time-stretching means changing the audio stream duration without affecting it's pitch. SoundTouch uses WSOLA-like time-stretching routines that operate in the time domain. Compared to sample rate transposing, time-stretching is a much heavier operation and also requires a longer processing "window" of sound samples used by the processing algorithm, thus increasing the algorithm input/output latency. Typical i/o latency for the SoundTouch time-stretch algorithm is around 100 ms.

Sample rate transposing and time-stretching are then used together to produce the tempo, pitch and rate controls:

'Tempo' control is implemented purely by time-stretching. 'Rate' control is implemented purely by sample rate transposing. 'Pitch' control is implemented as a combination of time-stretching and sample rate transposing. For example, to increase pitch the audio stream is first time-stretched to longer duration (without affecting pitch) and then transposed back to original duration by sample rate transposing, which simultaneously reduces duration and increases pitch. The result is original duration but increased pitch. 3.4 Tuning the algorithm parameters

The time-stretch algorithm has few parameters that can be tuned to optimize sound quality for certain application. The current default parameters have been chosen by iterative if-then analysis (read: "trial and error") to obtain best subjective sound quality in pop/rock music processing, but in applications processing different kind of sound the default parameter set may result into a sub-optimal result.

The time-stretch algorithm default parameter values are set by the following #defines in file "TDStretch.h":

#define DEFAULT_SEQUENCE_MS AUTOMATIC #define DEFAULT_SEEKWINDOW_MS AUTOMATIC #define DEFAULT_OVERLAP_MS 8 These parameters affect to the time-stretch algorithm as follows:

DEFAULT_SEQUENCE_MS: This is the default length of a single processing sequence in milliseconds which determines the how the original sound is chopped in the time-stretch algorithm. Larger values mean fewer sequences are used in processing. In principle a larger value sounds better when slowing down the tempo, but worse when increasing the tempo and vice versa.

By default, this setting value is calculated automatically according to tempo value. DEFAULT_SEEKWINDOW_MS: The seeking window default length in milliseconds is for the algorithm that seeks the best possible overlapping location. This determines from how wide a sample "window" the algorithm can use to find an optimal mixing location when the sound sequences are to be linked back together.

The bigger this window setting is, the higher the possibility to find a better mixing position becomes, but at the same time large values may cause a "drifting" sound artifact because neighboring sequences can be chosen at more uneven intervals. If there's a disturbing artifact that sounds as if a constant frequency was drifting around, try reducing this setting.

By default, this setting value is calculated automatically according to tempo value. DEFAULT_OVERLAP_MS: Overlap length in milliseconds. When the sound sequences are mixed back together to form again a continuous sound stream, this parameter defines how much the ends of the consecutive sequences will overlap with each other.

This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a smaller value on this. Notice that these parameters can also be set during execution time with functions "TDStretch::setParameters()" and "SoundTouch::setSetting()".

The table below summaries how the parameters can be adjusted for different applications:

Parameter name Default value magnitude Larger value affects... Smaller value affects... Effect to CPU burden SEQUENCE_MS Default value is relatively large, chosen for slowing down music tempo Larger value is usually better for slowing down tempo. Growing the value decelerates the "echoing" artifact when slowing down the tempo. Smaller value might be better for speeding up tempo. Reducing the value accelerates the "echoing" artifact when slowing down the tempo Increasing the parameter value reduces computation burden SEEKWINDOW_MS Default value is relatively large, chosen for slowing down music tempo Larger value eases finding a good mixing position, but may cause a "drifting" artifact Smaller reduce possibility to find a good mixing position, but reduce the "drifting" artifact. Increasing the parameter value increases computation burden OVERLAP_MS Default value is relatively large, chosen to suit with above parameters. If you reduce the "sequence ms" setting, you might wish to try a smaller value. Increasing the parameter value increases computation burden 3.5 Performance Optimizations

General optimizations:

The time-stretch routine has a 'quick' mode that substantially speeds up the algorithm but may slightly compromise the sound quality. This mode is activated by calling SoundTouch::setSetting() function with parameter id of SETTING_USE_QUICKSEEK and value "1", i.e.

setSetting(SETTING_USE_QUICKSEEK, 1);

CPU-specific optimizations:

Intel x86 specific SIMD optimizations are implemented using compiler intrinsics, providing about a 3x processing speedup for x86 compatible processors vs. non-SIMD implementation:

Intel MMX optimized routines are used with x86 CPUs when 16bit integer sample type is used Intel SSE optimized routines are used with x86 CPUs when 32bit floating point sample type is used 3.5 OpenMP parallel computation

SoundTouch 1.9 onwards support running the algorithms parallel in several CPU cores. Based on benchmark the experienced multi-core processing speed-up gain ranges between +30% (on a high-spec dual-core x86 Windows PC) to 215% (on a moderately low-spec quad-core ARM of Raspberry Pi2).

The parallel computing support is implemented using OpenMP spec 3.0 instructions. These instructions are supported by Visual C++ 2008 and later, and GCC v4.2 and later. Compilers that do not supporting OpenMP will ignore these optimizations and routines will still work properly. Possible warnings about unknown #pragmas are related to OpenMP support and can be safely ignored.

The OpenMP improvements are disabled by default, and need to be enabled by developer during compile-time. Reason for this is that parallel processing adds moderate runtime overhead in managing the multi-threading, so it may not be necessary nor desirable in all applications. For example real-time processing that is not constrained by CPU power will not benefit of speed-up provided by the parallel processing, in the contrary it may increase power consumption due to the increased overhead.

However, applications that run on low-spec multi-core CPUs and may otherwise have possibly constrained performance will benefit of the OpenMP improvements. This include for example multi-core embedded devices.

OpenMP parallel computation can be enabled before compiling SoundTouch library as follows:

Visual Studio: Open properties for the SoundTouch sub-project, browse to C/C++ and Language settings. Set there "OpenMP support" to "Yes". Alternatively add /openmp switch to command-line parameters GNU: Run the configure script with "./configure --enable-openmp" switch, then run make as usually Android: Add "-fopenmp" switches to compiler & linker options, see README-SoundTouch-Android.html in the source code package for more detailed instructions. 4. SoundStretch audio processing utility

SoundStretch audio processing utility Copyright (c) Olli Parviainen 2002-2015

SoundStretch is a simple command-line application that can change tempo, pitch and playback rates of WAV sound files. This program is intended primarily to demonstrate how the "SoundTouch" library can be used to process sound in your own program, but it can as well be used for processing sound files.

4.1. SoundStretch Usage Instructions

SoundStretch Usage syntax:

soundstretch infilename outfilename [switches] Where:

"infilename" Name of the input sound data file (in .WAV audio file format). Give "stdin" as filename to use standard input pipe. "outfilename" Name of the output sound file where the resulting sound is saved (in .WAV audio file format). This parameter may be omitted if you don't want to save the output (e.g. when only calculating BPM rate with '-bpm' switch). Give "stdout" as filename to use standard output pipe. [switches] Are one or more control switches. Available control switches are:

-tempo=n Change the sound tempo by n percents (n = -95.0 .. +5000.0 %) -pitch=n Change the sound pitch by n semitones (n = -60.0 .. + 60.0 semitones) -rate=n Change the sound playback rate by n percents (n = -95.0 .. +5000.0 %) -bpm=n Detect the Beats-Per-Minute (BPM) rate of the sound and adjust the tempo to meet 'n' BPMs. When this switch is applied, the "-tempo" switch is ignored. If "=n" is omitted, i.e. switch "-bpm" is used alone, then the BPM rate is estimated and displayed, but tempo not adjusted according to the BPM value. -quick Use quicker tempo change algorithm. Gains speed but loses sound quality. -naa Don't use anti-alias filtering in sample rate transposing. Gains speed but loses sound quality. -license Displays the program license text (LGPL) Notes:

To use standard input/output pipes for processing, give "stdin" and "stdout" as input/output filenames correspondingly. The standard input/output pipes will still carry the audio data in .wav audio file format. The numerical switches allow both integer (e.g. "-tempo=123") and decimal (e.g. "-tempo=123.45") numbers. The "-naa" and/or "-quick" switches can be used to reduce CPU usage while compromising some sound quality The BPM detection algorithm works by detecting repeating bass or drum patterns at low frequencies of <250Hz. A lower-than-expected BPM figure may be reported for music with uneven or complex bass patterns. 4.2. SoundStretch usage examples

Example 1

The following command increases tempo of the sound file "originalfile.wav" by 12.5% and stores result to file "destinationfile.wav":

soundstretch originalfile.wav destinationfile.wav -tempo=12.5 Example 2

The following command decreases the sound pitch (key) of the sound file "orig.wav" by two semitones and stores the result to file "dest.wav":

soundstretch orig.wav dest.wav -pitch=-2 Example 3

The following command processes the file "orig.wav" by decreasing the sound tempo by 25.3% and increasing the sound pitch (key) by 1.5 semitones. Resulting .wav audio data is directed to standard output pipe:

soundstretch orig.wav stdout -tempo=-25.3 -pitch=1.5 Example 4

The following command detects the BPM rate of the file "orig.wav" and adjusts the tempo to match 100 beats per minute. Result is stored to file "dest.wav":

soundstretch orig.wav dest.wav -bpm=100 Example 5

The following command reads .wav sound data from standard input pipe and estimates the BPM rate:

soundstretch stdin -bpm Example 6

The following command tunes song from original 440Hz tuning to 432Hz tuning: this corresponds to lowering the pitch by -0.318 semitones:

soundstretch original.wav output.wav -pitch=-0.318 5. Change History

5.1. SoundTouch library Change History

1.9.2:

Fix in GNU package configuration 1.9.1:

Improved SoundTouch::flush() function so that it returns precisely the desired amount of samples for exact output duration control Redesigned quickseek algorithm for improved sound quality when using the quickseek mode. The new quickseek algorithm can find 99% as good results as the default full-scan mode, while the quickseek algorithm is remarkable less CPU intensive. Added adaptive integer divider scaling for improved sound quality when using integer processing algorithm 1.9:

Added support for parallel computation support via OpenMP primitives for better performance in multicore systems. Benchmarks show that achieved parallel processing speedup improvement typically range from +30% (x86 dual-core) to +180% (ARM quad-core). The OpenMP optimizations are disabled by default, see OpenMP notes above in this readme file how to enabled these optimizations. Android: Added support for Android devices featuring X86 and MIPS CPUs, in addition to ARM CPUs. Android: More versatile Android example application that processes WAV audio files with SoundTouch library Replaced Windows-like 'BOOL' types with native 'bool' Changed documentation token to "dist_doc_DATA" in Makefile.am file Miscellaneous small fixes and improvements 1.8.0:

Added support for multi-channel audio processing Added support for cubic and shannon interpolation for rate and pitch shift effects besides the original linear interpolation, to reduce aliasing at high frequencies due to interpolation. Cubic interpolation is used as default for floating point processing, and linear interpolation for integer processing. Fixed bug in anti-alias filtering that limited stop-band attenuation to -10 dB instead of <-50dB, and increased filter length from 32 to 64 taps to further reduce aliasing due to frequency folding. Performance improvements in cross-correlation algorithm Other bug and compatibility fixes 1.7.1:

Added files for Android compilation 1.7.0:

Sound quality improvements/li> Improved flush() to adjust output sound stream duration to match better with ideal duration Rewrote x86 cpu feature check to resolve compatibility problems Configure script automatically checks if CPU supports mmx & sse compatibility for GNU platform, and the script support now "--enable-x86-optimizations" switch to allow disabling x86-specific optimizations. Revised #define conditions for 32bit/64bit compatibility gnu autoconf/automake script compatibility fixes Tuned beat-per-minute detection algorithm 1.6.0:

Added automatic cutoff threshold adaptation to beat detection routine to better adapt BPM calculation to different types of music Retired 3DNow! optimization support as 3DNow! is nowadays obsoleted and assembler code is nuisance to maintain Retired "configure" file from source code package due to autoconf/automake versio conflicts, so that it is from now on to be generated by invoking "boostrap" script that uses locally available toolchain version for generating the "configure" file Resolved namespace/label naming conflicts with other libraries by replacing global labels such as INTEGER_SAMPLES with more specific SOUNDTOUCH_INTEGER_SAMPLES etc. Updated windows build scripts & project files for Visual Studio 2008 support Updated SoundTouch.dll API for .NET compatibility Added API for querying nominal processing input & output sample batch sizes 1.5.0:

Added normalization to correlation calculation and improvement automatic seek/sequence parameter calculation to improve sound quality Bugfixes: Fixed negative array indexing in quick seek algorithm FIR autoalias filter running too far in processing buffer Check against zero sample count in rate transposing Fix for x86-64 support: Removed pop/push instructions from the cpu detection algorithm. Check against empty buffers in FIFOSampleBuffer Other minor fixes & code cleanup Fixes in compilation scripts for non-Intel platforms Added Dynamic-Link-Library (DLL) version of SoundTouch library build, provided with Delphi/Pascal wrapper for calling the dll routines Added #define PREVENT_CLICK_AT_RATE_CROSSOVER that prevents a click artifact when crossing the nominal pitch from either positive to negative side or vice versa 1.4.1:

Fixed a buffer overflow bug in BPM detect algorithm routines if processing more than 2048 samples at one call 1.4.0:

Improved sound quality by automatic calculation of time stretch algorithm processing parameters according to tempo setting Moved BPM detection routines from SoundStretch application into SoundTouch library Bugfixes: Usage of uninitialied variables, GNU build scripts, compiler errors due to 'const' keyword mismatch. Source code cleanup 1.3.1:

Changed static class declaration to GCC 4.x compiler compatible syntax. Enabled MMX/SSE-optimized routines also for GCC compilers. Earlier the MMX/SSE-optimized routines were written in compiler-specific inline assembler, now these routines are migrated to use compiler intrinsic syntax which allows compiling the same MMX/SSE-optimized source code with both Visual C++ and GCC compilers. Set floating point as the default sample format and added switch to the GNU configure script for selecting the other sample format. 1.3.0:

Fixed tempo routine output duration inaccuracy due to rounding error Implemented separate processing routines for integer and floating arithmetic to allow improvements to floating point routines (earlier used algorithms mostly optimized for integer arithmetic also for floating point samples) Fixed a bug that distorts sound if sample rate changes during the sound stream Fixed a memory leak that appeared in MMX/SSE/3DNow! optimized routines Reduced redundant code pieces in MMX/SSE/3DNow! optimized routines vs. the standard C routines. MMX routine incompatibility with new gcc compiler versions Other miscellaneous bug fixes 1.2.1:

Added automake/autoconf scripts for GNU platforms (in courtesy of David Durham) Fixed SCALE overflow bug in rate transposer routine. Fixed 64bit address space bugs. Created a 'soundtouch' namespace for SAMPLETYPE definitions. 1.2.0:

Added support for 32bit floating point sample data type with SSE/3DNow! optimizations for Win32 platform (SSE/3DNow! optimizations currently not supported in GCC environment) Replaced 'make-gcc' script for GNU environment by master Makefile Added time-stretch routine configurability to SoundTouch main class Bugfixes 1.1.1:

Moved SoundTouch under lesser GPL license (LGPL). This allows using SoundTouch library in programs that aren't released under GPL license. Changed MMX routine organiation so that MMX optimized routines are now implemented in classes that are derived from the basic classes having the standard non-mmx routines. MMX routines to support gcc version 3. Replaced windows makefiles by script using the .dsw files 1.0.1:

"mmx_gcc.cpp": Added "using namespace std" and removed "return 0" from a function with void return value to fix compiler errors when compiling the library in Solaris environment. Moved file "FIFOSampleBuffer.h" to "include" directory to allow accessing the FIFOSampleBuffer class from external files. 1.0:

Initial release

5.2. SoundStretch application Change History

1.9:

Added support for WAV file 'fact' information chunk. 1.7.0:

Bugfixes in Wavfile: exception string formatting, avoid getLengthMs() integer precision overflow, support WAV files using 24/32bit sample format. 1.5.0:

Added "-speech" switch to activate algorithm parameters more suitable for speech processing than the default parameters tuned for music processing. 1.4.0:

Moved BPM detection routines from SoundStretch application into SoundTouch library Allow using standard input/output pipes as audio processing input/output streams 1.3.0:

Simplified accessing WAV files with floating point sample format. 1.2.1:

Fixed 64bit address space bugs. 1.2.0:

Added support for 32bit floating point sample data type Restructured the BPM routines into separate library Fixed big-endian conversion bugs in WAV file routines (hopefully :) 1.1.1:

Fixed bugs in WAV file reading & added byte-order conversion for big-endian processors. Moved SoundStretch source code under 'example' directory to highlight difference from SoundTouch stuff. Replaced windows makefiles by script using the .dsw files Output file name isn't required if output isn't desired (e.g. if using the switch '-bpm' in plain format only) 1.1:

Fixed "Release" settings in Microsoft Visual C++ project file (.dsp) Added beats-per-minute (BPM) detection routine and command-line switch "-bpm" 1.01:

Initial release 6. Acknowledgements

Kudos for these people who have contributed to development or submitted bugfixes:

Arthur A Richard Ash Stanislav Brabec Christian Budde Chris Bryan Jacek Caban Brian Cameron Jason Champion David Clark Patrick Colis Miquel Colon Jim Credland Sandro Cumerlato Justin Frankel Masa H. Jason Garland Takashi Iwai Thomas Klausner Mathias Möhl Yuval Naveh Paulo Pizarro Blaise Potard Michael Pruett Rajeev Puran RJ Ryan John Sheehy Tim Shuttleworth Albert Sirvent John Stumpo Katja Vetter Moral greetings to all other contributors and users also!

  1. LICENSE

SoundTouch audio processing library Copyright (c) Olli Parviainen

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

README.html file updated in Sep-2015

GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. (This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.) Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Libraries If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License). To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. {description} Copyright (C) {year} {fullname} This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Also add information on how to contact you by electronic and paper mail. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for tweaking knobs) written by James Random Hacker. {signature of Ty Coon}, 1 April 1990 Ty Coon, President of Vice That's all there is to it!

简介

暂无描述 展开 收起
LGPL-2.1
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
1
https://gitee.com/kkkkk5G/soundtouch.git
git@gitee.com:kkkkk5G/soundtouch.git
kkkkk5G
soundtouch
soundtouch
master

搜索帮助