DI-treetensor

treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors.

Almost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.

Installation

You can simply install it with pip command line from the official PyPI site.

pip install di-treetensor

Documentation

The detailed documentation are hosted on https://opendilab.github.io/DI-treetensor.

Only english version is provided now, the chinese documentation is still under development.

Quick Start

You can easily create a tree value object based on FastTreeValue.

import builtins
import os
from functools import partial

import treetensor.torch as torch

print = partial(builtins.print, sep=os.linesep)

if __name__ == '__main__':
# create a tree tensor
t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})
print(t)
print(torch.randn(4, 5))  # create a normal tensor
print()

# structure of tree
print('Structure of tree')
print('t.a:', t.a)  # t.a is a native tensor
print('t.b:', t.b)  # t.b is a tree tensor
print('t.b.x', t.b.x)  # t.b.x is a native tensor
print()

# math calculations
print('Math calculation')
print('t ** 2:', t ** 2)
print('torch.sin(t).cos()', torch.sin(t).cos())
print()

# backward calculation
print('Backward calculation')
t.std().arctan().backward()
print()

# native operation
# all the ops can be used as the original usage of torch
print('Native operation')
print('torch.sin(t.a)', torch.sin(t.a))  # sin of native tensor


The result should be

<Tensor 0x7f0dae602760>
├── a --> tensor([[-1.2672, -1.5817, -0.3141],
│                 [ 1.8107, -0.1023,  0.0940]])
└── b --> <Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956,  0.8825, -0.5702, -0.2247],
[ 0.9235,  0.4538,  0.8775, -0.2642]])

tensor([[-0.9559,  0.7684,  0.2682, -0.6419,  0.8637],
[ 0.9526,  0.2927, -0.0591,  1.2804, -0.2455],
[ 0.4699, -0.9998,  0.6324, -0.6885,  1.1488],
[ 0.8920,  0.4401, -0.7785,  0.5931,  0.0435]])

Structure of tree
t.a:
tensor([[-1.2672, -1.5817, -0.3141],
[ 1.8107, -0.1023,  0.0940]])
t.b:
<Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956,  0.8825, -0.5702, -0.2247],
[ 0.9235,  0.4538,  0.8775, -0.2642]])

t.b.x
tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956,  0.8825, -0.5702, -0.2247],
[ 0.9235,  0.4538,  0.8775, -0.2642]])

Math calculation
t ** 2:
<Tensor 0x7f0dae602eb0>
├── a --> tensor([[1.6057, 2.5018, 0.0986],
│                 [3.2786, 0.0105, 0.0088]])
└── b --> <Tensor 0x7f0dae60c040>
└── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],
[2.5458, 0.7789, 0.3252, 0.0505],
[0.8528, 0.2059, 0.7699, 0.0698]])

torch.sin(t).cos()
<Tensor 0x7f0dae621910>
├── a --> tensor([[0.5782, 0.5404, 0.9527],
│                 [0.5642, 0.9948, 0.9956]])
└── b --> <Tensor 0x7f0dae6216a0>
└── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],
[0.5406, 0.7163, 0.8578, 0.9753],
[0.6983, 0.9054, 0.7185, 0.9661]])

Backward calculation
<Tensor 0x7f0dae60c400>
├── a --> tensor([[-0.0435, -0.0535, -0.0131],
│                 [ 0.0545, -0.0064, -0.0002]])
└── b --> <Tensor 0x7f0dae60cbe0>
└── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],
[ 0.0476,  0.0249, -0.0213, -0.0103],
[ 0.0262,  0.0113,  0.0248, -0.0116]])

Native operation
torch.sin(t.a)
tensor([[-0.9543, -0.9999, -0.3089],


For more quick start explanation and further usage, take a look at:

Extension

If you need to translate treevalue object to runnable source code, you may use the potc-treevalue plugin with the installation command below

pip install DI-treetensor[potc]

In potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph

Contribution

We appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.

And users can join our slack communication channel, or contact the core developer HansBug for more detailed discussion.

DI-treetensor released under the Apache 2.0 license.

简介

OpenDILab多模态可变长树形结构张量库 展开 收起
Python 等 3 种语言
Apache-2.0

近期动态

Python
1
https://gitee.com/opendilab/DI-treetensor.git
git@gitee.com:opendilab/DI-treetensor.git
opendilab
DI-treetensor
DI-treetensor
main