61 Star 651 Fork 253

PaddlePaddle / PaddleDetection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
vision_transformer.py 23.46 KB
一键复制 编辑 原始数据 按行查看 历史
Wenyu 提交于 2022-09-30 11:58 . [cp] fix recompute state (#7045)
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from paddle.nn.initializer import Constant
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable
from .transformer_utils import zeros_, DropPath, Identity
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
window_size=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=False)
if qkv_bias:
self.q_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
self.v_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
shape=(self.num_relative_distance, num_heads),
default_initializer=zeros_) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
coords_flatten_1 = paddle.unsqueeze(coords_flatten, 2)
coords_flatten_2 = paddle.unsqueeze(coords_flatten, 1)
relative_coords = coords_flatten_1.clone() - coords_flatten_2.clone(
)
#relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Wh
relative_coords = relative_coords.transpose(
(1, 2, 0)) #.contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[
0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros(shape=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index",
relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.0)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
x_shape = paddle.shape(x)
N, C = x_shape[1], x_shape[2]
qkv_bias = None
if self.q_bias is not None:
qkv_bias = paddle.concat(
(self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape((-1, N, 3, self.num_heads,
C // self.num_heads)).transpose((2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.reshape([-1])].reshape([
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1
]) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.transpose(
(2, 0, 1)) #.contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
window_size=None,
init_values=None,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5):
super().__init__()
self.norm1 = nn.LayerNorm(dim, epsilon=1e-6)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
if init_values is not None:
self.gamma_1 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
self.gamma_2 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is None:
x = x + self.drop_path(
self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=[224, 224],
patch_size=16,
in_chans=3,
embed_dim=768):
super().__init__()
self.num_patches_w = img_size[0] // patch_size
self.num_patches_h = img_size[1] // patch_size
num_patches = self.num_patches_w * self.num_patches_h
self.patch_shape = (img_size[0] // patch_size,
img_size[1] // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2D(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
@property
def num_patches_in_h(self):
return self.img_size[1] // self.patch_size
@property
def num_patches_in_w(self):
return self.img_size[0] // self.patch_size
def forward(self, x, mask=None):
B, C, H, W = x.shape
return self.proj(x)
class RelativePositionBias(nn.Layer):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
shape=(self.num_relative_distance, num_heads),
default_initialize=zeros_)
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = coords.flatten(1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.transpos(
(1, 2, 0)) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.transpose((2, 0, 1)) # nH, Wh*Ww, Wh*Ww
def get_sinusoid_encoding_table(n_position, d_hid, token=False):
''' Sinusoid position encoding table '''
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if token:
sinusoid_table = np.concatenate(
[sinusoid_table, np.zeros([1, d_hid])], dim=0)
return paddle.to_tensor(sinusoid_table, dtype=paddle.float32).unsqueeze(0)
@register
@serializable
class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
img_size=[672, 1092],
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer='nn.LayerNorm',
init_values=None,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
epsilon=1e-5,
final_norm=False,
pretrained=None,
out_indices=[3, 5, 7, 11],
use_abs_pos_emb=False,
use_sincos_pos_emb=True,
with_fpn=True,
use_checkpoint=False,
**args):
super().__init__()
self.img_size = img_size
self.embed_dim = embed_dim
self.with_fpn = with_fpn
self.use_checkpoint = use_checkpoint
self.use_sincos_pos_emb = use_sincos_pos_emb
self.use_rel_pos_bias = use_rel_pos_bias
self.final_norm = final_norm
if use_checkpoint:
paddle.seed(0)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
self.pos_w = self.patch_embed.num_patches_in_w
self.pos_h = self.patch_embed.num_patches_in_h
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim),
default_initializer=paddle.nn.initializer.Constant(value=0.))
if use_abs_pos_emb:
self.pos_embed = self.create_parameter(
shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
default_initializer=paddle.nn.initializer.TruncatedNormal(
std=.02))
elif use_sincos_pos_emb:
pos_embed = self.build_2d_sincos_position_embedding(embed_dim)
self.pos_embed = pos_embed
self.pos_embed = self.create_parameter(shape=pos_embed.shape)
self.pos_embed.set_value(pos_embed.numpy())
self.pos_embed.stop_gradient = True
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks = nn.LayerList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape
if use_rel_pos_bias else None,
epsilon=epsilon) for i in range(depth)
])
self.pretrained = pretrained
self.init_weight()
assert len(out_indices) <= 4, ''
self.out_indices = out_indices
self.out_channels = [embed_dim for _ in range(len(out_indices))]
self.out_strides = [4, 8, 16, 32][-len(out_indices):] if with_fpn else [
8 for _ in range(len(out_indices))
]
self.norm = Identity()
if self.with_fpn:
self.init_fpn(
embed_dim=embed_dim,
patch_size=patch_size, )
def init_weight(self):
pretrained = self.pretrained
if pretrained:
if 'http' in pretrained: #URL
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else: #model in local path
path = pretrained
load_state_dict = paddle.load(path)
model_state_dict = self.state_dict()
pos_embed_name = "pos_embed"
if pos_embed_name in load_state_dict.keys():
load_pos_embed = paddle.to_tensor(
load_state_dict[pos_embed_name], dtype="float32")
if self.pos_embed.shape != load_pos_embed.shape:
pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
model_state_dict[pos_embed_name] = self.resize_pos_embed(
load_pos_embed, (pos_size, pos_size),
(self.pos_h, self.pos_w))
# self.set_state_dict(model_state_dict)
load_state_dict[pos_embed_name] = model_state_dict[
pos_embed_name]
print("Load pos_embed and resize it from {} to {} .".format(
load_pos_embed.shape, self.pos_embed.shape))
self.set_state_dict(load_state_dict)
print("Load load_state_dict....")
def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2),
nn.BatchNorm2D(embed_dim),
nn.GELU(),
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn3 = Identity()
self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = Identity()
self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )
self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )
if not out_with_norm:
self.norm = Identity()
else:
self.norm = nn.LayerNorm(embed_dim, epsilon=1e-6)
def interpolate_pos_encoding(self, x, w, h):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
if npatch == N and w0 == self.patch_embed.num_patches_w and h0 == self.patch_embed.num_patches_h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape([
1, self.patch_embed.num_patches_w,
self.patch_embed.num_patches_h, dim
]).transpose((0, 3, 1, 2)),
scale_factor=(w0 / self.patch_embed.num_patches_w,
h0 / self.patch_embed.num_patches_h),
mode='bicubic', )
assert int(w0) == patch_pos_embed.shape[-2] and int(
h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.transpose(
(0, 2, 3, 1)).reshape([1, -1, dim])
return paddle.concat(
(class_pos_embed.unsqueeze(0), patch_pos_embed), axis=1)
def resize_pos_embed(self, pos_embed, old_hw, new_hw):
"""
Resize pos_embed weight.
Args:
pos_embed (Tensor): the pos_embed weight
old_hw (list[int]): the height and width of old pos_embed
new_hw (list[int]): the height and width of new pos_embed
Returns:
Tensor: the resized pos_embed weight
"""
cls_pos_embed = pos_embed[:, :1, :]
pos_embed = pos_embed[:, 1:, :]
pos_embed = pos_embed.transpose([0, 2, 1])
pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
pos_embed = F.interpolate(
pos_embed, new_hw, mode='bicubic', align_corners=False)
pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)
return pos_embed
def build_2d_sincos_position_embedding(
self,
embed_dim=768,
temperature=10000., ):
h, w = self.patch_embed.patch_shape
grid_w = paddle.arange(w, dtype=paddle.float32)
grid_h = paddle.arange(h, dtype=paddle.float32)
grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = grid_w.flatten()[..., None] @omega[None]
out_h = grid_h.flatten()[..., None] @omega[None]
pos_emb = paddle.concat(
[
paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
paddle.cos(out_h)
],
axis=1)[None, :, :]
pe_token = paddle.zeros([1, 1, embed_dim], dtype=paddle.float32)
pos_embed = paddle.concat([pe_token, pos_emb], axis=1)
# pos_embed.stop_gradient = True
return pos_embed
def forward(self, x):
x = x['image'] if isinstance(x, dict) else x
_, _, h, w = x.shape
x = self.patch_embed(x)
B, D, Hp, Wp = x.shape # b * c * h * w
cls_tokens = self.cls_token.expand(
(B, self.cls_token.shape[-2], self.cls_token.shape[-1]))
x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c
x = paddle.concat([cls_tokens, x], axis=1)
if self.pos_embed is not None:
# x = x + self.interpolate_pos_encoding(x, w, h)
x = x + self.interpolate_pos_encoding(x, h, w)
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias(
) if self.rel_pos_bias is not None else None
feats = []
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint and self.training:
x = paddle.distributed.fleet.utils.recompute(
blk, x, rel_pos_bias, **{"preserve_rng_state": True})
else:
x = blk(x, rel_pos_bias)
if idx in self.out_indices:
xp = paddle.reshape(
paddle.transpose(
self.norm(x[:, 1:, :]), perm=[0, 2, 1]),
shape=[B, D, Hp, Wp])
feats.append(xp)
if self.with_fpn:
fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(feats)):
feats[i] = fpns[i](feats[i])
return feats
@property
def num_layers(self):
return len(self.blocks)
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@property
def out_shape(self):
return [
ShapeSpec(
channels=c, stride=s)
for c, s in zip(self.out_channels, self.out_strides)
]
Python
1
https://gitee.com/paddlepaddle/PaddleDetection.git
git@gitee.com:paddlepaddle/PaddleDetection.git
paddlepaddle
PaddleDetection
PaddleDetection
release/2.5

搜索帮助