61 Star 651 Fork 253

PaddlePaddle / PaddleDetection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
centernet_fpn.py 14.71 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.nn.initializer import Uniform
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.backbones.hardnet import ConvLayer, HarDBlock
from ..shape_spec import ShapeSpec
__all__ = ['CenterNetDLAFPN', 'CenterNetHarDNetFPN']
# SGE attention
class BasicConv(nn.Layer):
def __init__(self,
in_planes,
out_planes,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
relu=True,
bn=True,
bias_attr=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2D(
in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr)
self.bn = nn.BatchNorm2D(
out_planes,
epsilon=1e-5,
momentum=0.01,
weight_attr=False,
bias_attr=False) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class ChannelPool(nn.Layer):
def forward(self, x):
return paddle.concat(
(paddle.max(x, 1).unsqueeze(1), paddle.mean(x, 1).unsqueeze(1)),
axis=1)
class SpatialGate(nn.Layer):
def __init__(self):
super(SpatialGate, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(
2,
1,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = F.sigmoid(x_out) # broadcasting
return x * scale
def fill_up_weights(up):
weight = up.weight.numpy()
f = math.ceil(weight.shape[2] / 2)
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(weight.shape[2]):
for j in range(weight.shape[3]):
weight[0, 0, i, j] = \
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c))
for c in range(1, weight.shape[0]):
weight[c, 0, :, :] = weight[0, 0, :, :]
up.weight.set_value(weight)
class IDAUp(nn.Layer):
def __init__(self, ch_ins, ch_out, up_strides, dcn_v2=True):
super(IDAUp, self).__init__()
for i in range(1, len(ch_ins)):
ch_in = ch_ins[i]
up_s = int(up_strides[i])
fan_in = ch_in * 3 * 3
stdv = 1. / math.sqrt(fan_in)
proj = nn.Sequential(
ConvNormLayer(
ch_in,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None,
initializer=Uniform(-stdv, stdv)),
nn.ReLU())
node = nn.Sequential(
ConvNormLayer(
ch_out,
ch_out,
filter_size=3,
stride=1,
use_dcn=dcn_v2,
bias_on=dcn_v2,
norm_decay=None,
dcn_lr_scale=1.,
dcn_regularizer=None,
initializer=Uniform(-stdv, stdv)),
nn.ReLU())
kernel_size = up_s * 2
fan_in = ch_out * kernel_size * kernel_size
stdv = 1. / math.sqrt(fan_in)
up = nn.Conv2DTranspose(
ch_out,
ch_out,
kernel_size=up_s * 2,
stride=up_s,
padding=up_s // 2,
groups=ch_out,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, inputs, start_level, end_level):
for i in range(start_level + 1, end_level):
upsample = getattr(self, 'up_' + str(i - start_level))
project = getattr(self, 'proj_' + str(i - start_level))
inputs[i] = project(inputs[i])
inputs[i] = upsample(inputs[i])
node = getattr(self, 'node_' + str(i - start_level))
inputs[i] = node(paddle.add(inputs[i], inputs[i - 1]))
return inputs
class DLAUp(nn.Layer):
def __init__(self, start_level, channels, scales, ch_in=None, dcn_v2=True):
super(DLAUp, self).__init__()
self.start_level = start_level
if ch_in is None:
ch_in = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(
self,
'ida_{}'.format(i),
IDAUp(
ch_in[j:],
channels[j],
scales[j:] // scales[j],
dcn_v2=dcn_v2))
scales[j + 1:] = scales[j]
ch_in[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, inputs):
out = [inputs[-1]] # start with 32
for i in range(len(inputs) - self.start_level - 1):
ida = getattr(self, 'ida_{}'.format(i))
outputs = ida(inputs, len(inputs) - i - 2, len(inputs))
out.insert(0, outputs[-1])
return out
@register
@serializable
class CenterNetDLAFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[16, 32, 64, 128, 256, 512] by default, means the channels of DLA-34
down_ratio (int): the down ratio from images to heatmap, 4 by default
last_level (int): the last level of input feature fed into the upsamplng block
out_channel (int): the channel of the output feature, 0 by default means
the channel of the input feature whose down ratio is `down_ratio`
first_level (None): the first level of input feature fed into the upsamplng block.
if None, the first level stands for logs(down_ratio)
dcn_v2 (bool): whether use the DCNv2, True by default
with_sge (bool): whether use SGE attention, False by default
"""
def __init__(self,
in_channels,
down_ratio=4,
last_level=5,
out_channel=0,
first_level=None,
dcn_v2=True,
with_sge=False):
super(CenterNetDLAFPN, self).__init__()
self.first_level = int(np.log2(
down_ratio)) if first_level is None else first_level
assert self.first_level >= 0, "first level in CenterNetDLAFPN should be greater or equal to 0, but received {}".format(
self.first_level)
self.down_ratio = down_ratio
self.last_level = last_level
scales = [2**i for i in range(len(in_channels[self.first_level:]))]
self.dla_up = DLAUp(
self.first_level,
in_channels[self.first_level:],
scales,
dcn_v2=dcn_v2)
self.out_channel = out_channel
if out_channel == 0:
self.out_channel = in_channels[self.first_level]
self.ida_up = IDAUp(
in_channels[self.first_level:self.last_level],
self.out_channel,
[2**i for i in range(self.last_level - self.first_level)],
dcn_v2=dcn_v2)
self.with_sge = with_sge
if self.with_sge:
self.sge_attention = SpatialGate()
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape]}
def forward(self, body_feats):
inputs = [body_feats[i] for i in range(len(body_feats))]
dla_up_feats = self.dla_up(inputs)
ida_up_feats = []
for i in range(self.last_level - self.first_level):
ida_up_feats.append(dla_up_feats[i].clone())
self.ida_up(ida_up_feats, 0, len(ida_up_feats))
feat = ida_up_feats[-1]
if self.with_sge:
feat = self.sge_attention(feat)
if self.down_ratio != 4:
feat = F.interpolate(
feat,
scale_factor=self.down_ratio // 4,
mode="bilinear",
align_corners=True)
return feat
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]
class TransitionUp(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
def forward(self, x, skip):
w, h = skip.shape[2], skip.shape[3]
out = F.interpolate(x, size=(w, h), mode="bilinear", align_corners=True)
out = paddle.concat([out, skip], 1)
return out
@register
@serializable
class CenterNetHarDNetFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[96, 214, 458, 784] by default, means the channels of HarDNet85
num_layers (int): HarDNet laters, 85 by default
down_ratio (int): the down ratio from images to heatmap, 4 by default
first_level (int|None): the first level of input feature fed into the upsamplng block.
if None, the first level stands for logs(down_ratio) - 1
last_level (int): the last level of input feature fed into the upsamplng block
out_channel (int): the channel of the output feature, 0 by default means
the channel of the input feature whose down ratio is `down_ratio`
"""
def __init__(self,
in_channels,
num_layers=85,
down_ratio=4,
first_level=None,
last_level=4,
out_channel=0):
super(CenterNetHarDNetFPN, self).__init__()
self.first_level = int(np.log2(
down_ratio)) - 1 if first_level is None else first_level
assert self.first_level >= 0, "first level in CenterNetDLAFPN should be greater or equal to 0, but received {}".format(
self.first_level)
self.down_ratio = down_ratio
self.last_level = last_level
self.last_pool = nn.AvgPool2D(kernel_size=2, stride=2)
assert num_layers in [68, 85], "HarDNet-{} not support.".format(
num_layers)
if num_layers == 85:
self.last_proj = ConvLayer(784, 256, kernel_size=1)
self.last_blk = HarDBlock(768, 80, 1.7, 8)
self.skip_nodes = [1, 3, 8, 13]
self.SC = [32, 32, 0]
gr = [64, 48, 28]
layers = [8, 8, 4]
ch_list2 = [224 + self.SC[0], 160 + self.SC[1], 96 + self.SC[2]]
channels = [96, 214, 458, 784]
self.skip_lv = 3
elif num_layers == 68:
self.last_proj = ConvLayer(654, 192, kernel_size=1)
self.last_blk = HarDBlock(576, 72, 1.7, 8)
self.skip_nodes = [1, 3, 8, 11]
self.SC = [32, 32, 0]
gr = [48, 32, 20]
layers = [8, 8, 4]
ch_list2 = [224 + self.SC[0], 96 + self.SC[1], 64 + self.SC[2]]
channels = [64, 124, 328, 654]
self.skip_lv = 2
self.transUpBlocks = nn.LayerList([])
self.denseBlocksUp = nn.LayerList([])
self.conv1x1_up = nn.LayerList([])
self.avg9x9 = nn.AvgPool2D(kernel_size=(9, 9), stride=1, padding=(4, 4))
prev_ch = self.last_blk.get_out_ch()
for i in range(3):
skip_ch = channels[3 - i]
self.transUpBlocks.append(TransitionUp(prev_ch, prev_ch))
if i < self.skip_lv:
cur_ch = prev_ch + skip_ch
else:
cur_ch = prev_ch
self.conv1x1_up.append(
ConvLayer(
cur_ch, ch_list2[i], kernel_size=1))
cur_ch = ch_list2[i]
cur_ch -= self.SC[i]
cur_ch *= 3
blk = HarDBlock(cur_ch, gr[i], 1.7, layers[i])
self.denseBlocksUp.append(blk)
prev_ch = blk.get_out_ch()
prev_ch += self.SC[0] + self.SC[1] + self.SC[2]
self.out_channel = prev_ch
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape]}
def forward(self, body_feats):
x = body_feats[-1]
x_sc = []
x = self.last_proj(x)
x = self.last_pool(x)
x2 = self.avg9x9(x)
x3 = x / (x.sum((2, 3), keepdim=True) + 0.1)
x = paddle.concat([x, x2, x3], 1)
x = self.last_blk(x)
for i in range(3):
skip_x = body_feats[3 - i]
x_up = self.transUpBlocks[i](x, skip_x)
x_ch = self.conv1x1_up[i](x_up)
if self.SC[i] > 0:
end = x_ch.shape[1]
new_st = end - self.SC[i]
x_sc.append(x_ch[:, new_st:, :, :])
x_ch = x_ch[:, :new_st, :, :]
x2 = self.avg9x9(x_ch)
x3 = x_ch / (x_ch.sum((2, 3), keepdim=True) + 0.1)
x_new = paddle.concat([x_ch, x2, x3], 1)
x = self.denseBlocksUp[i](x_new)
scs = [x]
for i in range(3):
if self.SC[i] > 0:
scs.insert(
0,
F.interpolate(
x_sc[i],
size=(x.shape[2], x.shape[3]),
mode="bilinear",
align_corners=True))
neck_feat = paddle.concat(scs, 1)
return neck_feat
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, stride=self.down_ratio)]
Python
1
https://gitee.com/paddlepaddle/PaddleDetection.git
git@gitee.com:paddlepaddle/PaddleDetection.git
paddlepaddle
PaddleDetection
PaddleDetection
release/2.5

搜索帮助