## Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning
* Framework to capture the dynamics of high-frequency limit order books.
<img src="./Graph/pipline.png" width="650">
#### Overview
In this project I used machine learning methods to capture the high-frequency limit order book dynamics and simple trading strategy to get the P&L outcomes.
* Feature Extractor
* Rise Ratio
<img src="./Graph/Price_B1A1.png" width="650">
* Depth Ratio
<img src="./Graph/depth.png" width="650">
[Note] : [Feature_Selection] (Feature_Selection)
* Learning Model Trainer
* RandomForestClassifier
* ExtraTreesClassifier
* AdaBoostClassifier
* GradientBoostingClassifier
* SVM
* Use best model to predict next 10 seconds
<img src="./Graph/CV_Best_Model.png" width="650">
* Prediction outcome
<img src="./Graph/prediction.png" width="650">
* Profit & Loss
<img src="./Graph/P_L.png" width="650">
[Note] : [Model_Selection] (Model_Selection)
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
展开
收起