1 Star 1 Fork 3

张小农 / 某扫描器核心反编译

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
random.py 21.87 KB
一键复制 编辑 原始数据 按行查看 历史
张小农 提交于 2019-03-21 13:47 . first code
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
# uncompyle6 version 3.2.3
# Python bytecode 3.6 (3379)
# Decompiled from: Python 3.6.8 |Anaconda custom (64-bit)| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)]
# Embedded file name: random.py
"""Random variable generators.
integers
--------
uniform within range
sequences
---------
pick random element
pick random sample
pick weighted random sample
generate random permutation
distributions on the real line:
------------------------------
uniform
triangular
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull
distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises
General notes on the underlying Mersenne Twister core generator:
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
and is, therefore, threadsafe.
"""
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512
import itertools as _itertools, bisect as _bisect
__all__ = [
"Random",
"seed",
"random",
"uniform",
"randint",
"choice",
"sample",
"randrange",
"shuffle",
"normalvariate",
"lognormvariate",
"expovariate",
"vonmisesvariate",
"gammavariate",
"triangular",
"gauss",
"betavariate",
"paretovariate",
"weibullvariate",
"getstate",
"setstate",
"getrandbits",
"choices",
"SystemRandom",
]
NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
TWOPI = 2.0 * _pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53
RECIP_BPF = 2 ** (-BPF)
import _random
class Random(_random.Random):
"""Random number generator base class used by bound module functions.
Used to instantiate instances of Random to get generators that don't
share state.
Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods: random(), seed(), getstate(), and setstate().
Optionally, implement a getrandbits() method so that randrange()
can cover arbitrarily large ranges.
"""
VERSION = 3
def __init__(self, x=None):
"""Initialize an instance.
Optional argument x controls seeding, as for Random.seed().
"""
self.seed(x)
self.gauss_next = None
def seed(self, a=None, version=2):
"""Initialize internal state from hashable object.
None or no argument seeds from current time or from an operating
system specific randomness source if available.
If *a* is an int, all bits are used.
For version 2 (the default), all of the bits are used if *a* is a str,
bytes, or bytearray. For version 1 (provided for reproducing random
sequences from older versions of Python), the algorithm for str and
bytes generates a narrower range of seeds.
"""
if version == 1:
if isinstance(a, (str, bytes)):
a = a.decode("latin-1") if isinstance(a, bytes) else a
x = ord(a[0]) << 7 if a else 0
for c in map(ord, a):
x = (1000003 * x ^ c) & 18446744073709551615
x ^= len(a)
a = -2 if x == -1 else x
if version == 2:
if isinstance(a, (str, bytes, bytearray)):
if isinstance(a, str):
a = a.encode()
a += _sha512(a).digest()
a = int.from_bytes(a, "big")
super().seed(a)
self.gauss_next = None
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return (self.VERSION, super().getstate(), self.gauss_next)
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 3:
version, internalstate, self.gauss_next = state
super().setstate(internalstate)
else:
if version == 2:
version, internalstate, self.gauss_next = state
try:
internalstate = tuple((x % 4294967296 for x in internalstate))
except ValueError as e:
raise TypeError from e
super().setstate(internalstate)
else:
raise ValueError(
"state with version %s passed to Random.setstate() of version %s"
% (version, self.VERSION)
)
def __getstate__(self):
return self.getstate()
def __setstate__(self, state):
self.setstate(state)
def __reduce__(self):
return (self.__class__, (), self.getstate())
def randrange(self, start, stop=None, step=1, _int=int):
"""Choose a random item from range(start, stop[, step]).
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
"""
istart = _int(start)
if istart != start:
raise ValueError("non-integer arg 1 for randrange()")
if stop is None:
if istart > 0:
return self._randbelow(istart)
raise ValueError("empty range for randrange()")
istop = _int(stop)
if istop != stop:
raise ValueError("non-integer stop for randrange()")
width = istop - istart
if step == 1:
if width > 0:
return istart + self._randbelow(width)
if step == 1:
raise ValueError(
"empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
)
istep = _int(step)
if istep != step:
raise ValueError("non-integer step for randrange()")
if istep > 0:
n = (width + istep - 1) // istep
else:
if istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError("zero step for randrange()")
if n <= 0:
raise ValueError("empty range for randrange()")
return istart + istep * self._randbelow(n)
def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
"""
return self.randrange(a, b + 1)
def _randbelow(
self,
n,
int=int,
maxsize=1 << BPF,
type=type,
Method=_MethodType,
BuiltinMethod=_BuiltinMethodType,
):
"""Return a random int in the range [0,n). Raises ValueError if n==0."""
random = self.random
getrandbits = self.getrandbits
if type(random) is BuiltinMethod or type(getrandbits) is Method:
k = n.bit_length()
r = getrandbits(k)
while r >= n:
r = getrandbits(k)
return r
elif n >= maxsize:
_warn(
"Underlying random() generator does not supply \nenough bits to choose from a population range this large.\nTo remove the range limitation, add a getrandbits() method."
)
return int(random() * n)
else:
rem = maxsize % n
limit = (maxsize - rem) / maxsize
r = random()
while r >= limit:
r = random()
return int(r * maxsize) % n
def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
try:
i = self._randbelow(len(seq))
except ValueError:
raise IndexError("Cannot choose from an empty sequence") from None
return seq[i]
def shuffle(self, x, random=None):
"""Shuffle list x in place, and return None.
Optional argument random is a 0-argument function returning a
random float in [0.0, 1.0); if it is the default None, the
standard random.random will be used.
"""
if random is None:
randbelow = self._randbelow
for i in reversed(range(1, len(x))):
j = randbelow(i + 1)
x[i], x[j] = x[j], x[i]
else:
_int = int
for i in reversed(range(1, len(x))):
j = _int(random() * (i + 1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k):
"""Chooses k unique random elements from a population sequence or set.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
"""
if isinstance(population, _Set):
population = tuple(population)
if not isinstance(population, _Sequence):
raise TypeError(
"Population must be a sequence or set. For dicts, use list(d)."
)
randbelow = self._randbelow
n = len(population)
if not 0 <= k <= n:
raise ValueError("Sample larger than population or is negative")
result = [None] * k
setsize = 21
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4))
if n <= setsize:
pool = list(population)
for i in range(k):
j = randbelow(n - i)
result[i] = pool[j]
pool[j] = pool[n - i - 1]
else:
selected = set()
selected_add = selected.add
for i in range(k):
j = randbelow(n)
while j in selected:
j = randbelow(n)
selected_add(j)
result[i] = population[j]
return result
def choices(self, population, weights=None, *, cum_weights=None, k=1):
"""Return a k sized list of population elements chosen with replacement.
If the relative weights or cumulative weights are not specified,
the selections are made with equal probability.
"""
random = self.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = list(_itertools.accumulate(weights))
else:
if weights is not None:
raise TypeError("Cannot specify both weights and cumulative weights")
if len(cum_weights) != len(population):
raise ValueError("The number of weights does not match the population")
bisect = _bisect.bisect
total = cum_weights[-1]
return [population[bisect(cum_weights, random() * total)] for i in range(k)]
def uniform(self, a, b):
"""Get a random number in the range [a, b) or [a, b] depending on rounding."""
return a + (b - a) * self.random()
def triangular(self, low=0.0, high=1.0, mode=None):
"""Triangular distribution.
Continuous distribution bounded by given lower and upper limits,
and having a given mode value in-between.
http://en.wikipedia.org/wiki/Triangular_distribution
"""
u = self.random()
try:
c = 0.5 if mode is None else (mode - low) / (high - low)
except ZeroDivisionError:
return low
else:
if u > c:
u = 1.0 - u
c = 1.0 - c
low, high = high, low
return low + (high - low) * (u * c) ** 0.5
def normalvariate(self, mu, sigma):
"""Normal distribution.
mu is the mean, and sigma is the standard deviation.
"""
random = self.random
while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST * (u1 - 0.5) / u2
zz = z * z / 4.0
if zz <= -_log(u2):
break
return mu + z * sigma
def lognormvariate(self, mu, sigma):
"""Log normal distribution.
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
"""
return _exp(self.normalvariate(mu, sigma))
def expovariate(self, lambd):
"""Exponential distribution.
lambd is 1.0 divided by the desired mean. It should be
nonzero. (The parameter would be called "lambda", but that is
a reserved word in Python.) Returned values range from 0 to
positive infinity if lambd is positive, and from negative
infinity to 0 if lambd is negative.
"""
return -_log(1.0 - self.random()) / lambd
def vonmisesvariate(self, mu, kappa):
"""Circular data distribution.
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
"""
random = self.random
if kappa <= 1e-06:
return TWOPI * random()
else:
s = 0.5 / kappa
r = s + _sqrt(1.0 + s * s)
while 1:
u1 = random()
z = _cos(_pi * u1)
d = z / (r + z)
u2 = random()
if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
break
q = 1.0 / r
f = (q + z) / (1.0 + q * z)
u3 = random()
if u3 > 0.5:
theta = (mu + _acos(f)) % TWOPI
else:
theta = (mu - _acos(f)) % TWOPI
return theta
def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function!
Conditions on the parameters are alpha > 0 and beta > 0.
The probability distribution function is:
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
"""
if alpha <= 0.0 or beta <= 0.0:
raise ValueError("gammavariate: alpha and beta must be > 0.0")
random = self.random
if alpha > 1.0:
ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv
while 1:
u1 = random()
if not 1e-07 < u1 < 0.9999999:
continue
u2 = 1.0 - random()
v = _log(u1 / (1.0 - u1)) / ainv
x = alpha * _exp(v)
z = u1 * u1 * u2
r = bbb + ccc * v - x
if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
return x * beta
else:
if alpha == 1.0:
u = random()
while u <= 1e-07:
u = random()
return -_log(u) * beta
while 1:
u = random()
b = (_e + alpha) / _e
p = b * u
if p <= 1.0:
x = p ** (1.0 / alpha)
else:
x = -_log((b - p) / alpha)
u1 = random()
if p > 1.0:
if u1 <= x ** (alpha - 1.0):
break
else:
if u1 <= _exp(-x):
break
return x * beta
def gauss(self, mu, sigma):
"""Gaussian distribution.
mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function.
Not thread-safe without a lock around calls.
"""
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z * sigma
def betavariate(self, alpha, beta):
"""Beta distribution.
Conditions on the parameters are alpha > 0 and beta > 0.
Returned values range between 0 and 1.
"""
y = self.gammavariate(alpha, 1.0)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.0))
def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
u = 1.0 - self.random()
return 1.0 / u ** (1.0 / alpha)
def weibullvariate(self, alpha, beta):
"""Weibull distribution.
alpha is the scale parameter and beta is the shape parameter.
"""
u = 1.0 - self.random()
return alpha * (-_log(u)) ** (1.0 / beta)
class SystemRandom(Random):
"""Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows).
Not available on all systems (see os.urandom() for details).
"""
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (int.from_bytes(_urandom(7), "big") >> 3) * RECIP_BPF
def getrandbits(self, k):
"""getrandbits(k) -> x. Generates an int with k random bits."""
if k <= 0:
raise ValueError("number of bits must be greater than zero")
if k != int(k):
raise TypeError("number of bits should be an integer")
numbytes = (k + 7) // 8
x = int.from_bytes(_urandom(numbytes), "big")
return x >> numbytes * 8 - k
def seed(self, *args, **kwds):
"""Stub method. Not used for a system random number generator."""
pass
def _notimplemented(self, *args, **kwds):
"""Method should not be called for a system random number generator."""
raise NotImplementedError("System entropy source does not have state.")
getstate = setstate = _notimplemented
def _test_generator(n, func, args):
import time
print(n, "times", func.__name__)
total = 0.0
sqsum = 0.0
smallest = 10000000000.0
largest = -10000000000.0
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x * x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print(round(t1 - t0, 3), "sec,", end=" ")
avg = total / n
stddev = _sqrt(sqsum / n - avg * avg)
print("avg %g, stddev %g, min %g, max %g\n" % (avg, stddev, smallest, largest))
def _test(N=2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0.0, 1.0))
_test_generator(N, lognormvariate, (0.0, 1.0))
_test_generator(N, vonmisesvariate, (0.0, 1.0))
_test_generator(N, gammavariate, (0.01, 1.0))
_test_generator(N, gammavariate, (0.1, 1.0))
_test_generator(N, gammavariate, (0.1, 2.0))
_test_generator(N, gammavariate, (0.5, 1.0))
_test_generator(N, gammavariate, (0.9, 1.0))
_test_generator(N, gammavariate, (1.0, 1.0))
_test_generator(N, gammavariate, (2.0, 1.0))
_test_generator(N, gammavariate, (20.0, 1.0))
_test_generator(N, gammavariate, (200.0, 1.0))
_test_generator(N, gauss, (0.0, 1.0))
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 0.3333333333333333))
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
choices = _inst.choices
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits
if __name__ == "__main__":
_test()
Python
1
https://gitee.com/zhanghk668/opsrv_extracted.git
git@gitee.com:zhanghk668/opsrv_extracted.git
zhanghk668
opsrv_extracted
某扫描器核心反编译
master

搜索帮助