1 Star 0 Fork 1

diycp2015 / AuxeticStructureAbaqusPlugin

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MulanPSL-2.0

AuxeticStructureAbaqusPlugin

介绍

abaqus生成三维内凹六边形框架插件

输入内凹六边形参数,即可一键生成所需的三维框架结构

截图

参数

H---------直杆长度

D---------斜杆在直杆的投影长度

theta-----直杆与斜杆夹角

x_n-------x轴方向阵列的个数

y_n-------y轴方向阵列的个数

z_n-------z轴方向阵列的个数

安装

下载AuxeticStructure文件夹,复制到abaqus的插件目录下。比如我的为C:\Users\(你的用户名)\abaqus_plugins。重启abaqus即可在Plug-ins下看到AuxeticStructure插件。测试环境为Windows10/Abaqus6.14,其他环境兼容性未知。

用法

输入参数,点击ok。在左侧模型树右击Parts/Part-1/下的Features,选择Regenerate即可生成模型

输入框

regenerate

在材料模块,可设置截面为梁单元,设置好截面后进行后续模拟仿真

beam

原理

abaqus脚本使用Python编写。绘制一条线段需要线段的两端点坐标,即((x1,y1,z1),(x2,y2,z2))。

绘制多条线段为:(((x1,y1,z1),(x2,y2,z2)),((x3,y3,z3),(x4,y4,z4)),......)

所以绘制空间内凹六边形的核心工作是用Python脚本计算出所有线段的端点。

总的步骤如下:

  • 生成x轴方向的折线
  • 生成y轴方向的折线
  • 生成层内部的垂直线段
  • 将绘制好的单层在z轴方向进行复制
  • 绘制层与层之间的垂直线段
  • 绘制底层垂直线段
  • 绘制顶层垂直线段

核心代码如下,可将下面代码复制保存为script.py文件,在abaqus的file下选择Run Script,运行此文件,同样可以生成模型。此脚本适合二次开发。

# -*- coding: utf-8 -*-
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *

import math

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type=DEFORMABLE_BODY)


H = 3.0
D = 1.05
theta = 45.0 / 180.0 * math.pi

x_n = 3
y_n = 3
z_n = 3



# 最终所有线段集合
lines = []

# 生成x轴方向的折线
def generateXLines():

    # x轴方向的折线的集合
    lines = []

    # x轴方向四条折线坐标集合
    line1 = []
    line2 = []
    line3 = []
    line4 = []

    # 沿y轴复制折线列表
    copy_4_lines = []

    # x轴方向四条折线奇数点坐标列表
    line1_odd_point_list = []
    line2_odd_point_list = []
    line3_odd_point_list = []
    line4_odd_point_list = []

    # x轴方向四条折线偶数点坐标列表
    line1_even_point_list = []
    line2_even_point_list = []
    line3_even_point_list = []
    line4_even_point_list = []

    # x方向上,奇数点坐标
    for i in range(x_n + 1):
        line1_odd_point = ( i * 2 * D, 0, 0)
        line1_odd_point_list.append(line1_odd_point)  

        line2_odd_point = ( i * 2 * D, 0, H)
        line2_odd_point_list.append(line2_odd_point)

        line3_odd_point = ( i * 2 * D, D, D / math.tan(theta))
        line3_odd_point_list.append(line3_odd_point)

        line4_odd_point = ( i * 2 * D, D, H - D / math.tan(theta))
        line4_odd_point_list.append(line4_odd_point)
    
    # x方向上,偶数点坐标
    for j in range(x_n):
        line1_even_point = ( (j + 1) * 2 * D - D, 0, D / math.tan(theta))
        line1_even_point_list.append(line1_even_point)  

        line2_even_point = ( (j + 1) * 2 * D - D, 0, H - D / math.tan(theta))
        line2_even_point_list.append(line2_even_point)

        line3_even_point = ( (j + 1) * 2 * D - D, D, 0)
        line3_even_point_list.append(line3_even_point)  

        line4_even_point = ( (j + 1) * 2 * D - D, D, H)
        line4_even_point_list.append(line4_even_point)


    # 将点坐标两两配对,形成线段两端坐标对
    for k in range(x_n):
        line1_points_1 = (line1_odd_point_list[k],line1_even_point_list[k])
        line1_points_2 = (line1_even_point_list[k],line1_odd_point_list[k+1])
        line1.append(line1_points_1)
        line1.append(line1_points_2)

        line2_points_1 = (line2_odd_point_list[k],line2_even_point_list[k])
        line2_points_2 = (line2_even_point_list[k],line2_odd_point_list[k+1])
        line2.append(line2_points_1)
        line2.append(line2_points_2)

        line3_points_1 = (line3_odd_point_list[k],line3_even_point_list[k])
        line3_points_2 = (line3_even_point_list[k],line3_odd_point_list[k+1])
        line3.append(line3_points_1)
        line3.append(line3_points_2)

        line4_points_1 = (line4_odd_point_list[k],line4_even_point_list[k])
        line4_points_2 = (line4_even_point_list[k],line4_odd_point_list[k+1])
        line4.append(line4_points_1)
        line4.append(line4_points_2)
        
    for l in range(y_n + 1):

        for each1 in line1:
            newLine1 = ((each1[0][0],each1[0][1] + 2 * D * l,each1[0][2]),((each1[1][0],each1[1][1] + 2 * D * l,each1[1][2])))
            copy_4_lines.append(newLine1)

        for each2 in line2:
            newLine2 = ((each2[0][0],each2[0][1] + 2 * D * l,each2[0][2]),((each2[1][0],each2[1][1] + 2 * D * l,each2[1][2])))
            copy_4_lines.append(newLine2)  

    for m in range(y_n):

        for each3 in line3:
            newLine3 = ((each3[0][0],each3[0][1] + 2 * D * m,each3[0][2]),((each3[1][0],each3[1][1] + 2 * D * m,each3[1][2])))
            copy_4_lines.append(newLine3)

        for each4 in line4:
            newLine4 = ((each4[0][0],each4[0][1] + 2 * D * m,each4[0][2]),((each4[1][0],each4[1][1] + 2 * D * m,each4[1][2])))
            copy_4_lines.append(newLine4) 

    lines = line1 + line2 + line3 + line4 + copy_4_lines

    return lines

# 生成y轴方向的折线
def generateYLines():

    # y轴方向的折线的集合
    lines = []

    # y轴方向四条折线坐标集合
    line1 = []
    line2 = []
    line3 = []
    line4 = []

    # 沿x轴复制折线列表
    copy_4_lines = []

    # y轴方向四条折线奇数点坐标列表
    line1_odd_point_list = []
    line2_odd_point_list = []
    line3_odd_point_list = []
    line4_odd_point_list = []

    # y轴方向四条折线偶数点坐标列表
    line1_even_point_list = []
    line2_even_point_list = []
    line3_even_point_list = []
    line4_even_point_list = []

    # y方向上,奇数点坐标
    for i in range(y_n + 1):
        line1_odd_point = ( 0, i * 2 * D, 0)
        line1_odd_point_list.append(line1_odd_point)  

        line2_odd_point = ( 0, i * 2 * D, H)
        line2_odd_point_list.append(line2_odd_point)

        line3_odd_point = ( D, i * 2 * D, D / math.tan(theta))
        line3_odd_point_list.append(line3_odd_point)

        line4_odd_point = ( D, i * 2 * D, H - D / math.tan(theta))
        line4_odd_point_list.append(line4_odd_point)

    # y方向上,偶数点坐标
    for j in range(y_n):
        line1_even_point = ( 0, (j + 1) * 2 * D - D, D / math.tan(theta))
        line1_even_point_list.append(line1_even_point)  

        line2_even_point = ( 0, (j + 1) * 2 * D - D, H - D / math.tan(theta))
        line2_even_point_list.append(line2_even_point)

        line3_even_point = ( D, (j + 1) * 2 * D - D, 0)
        line3_even_point_list.append(line3_even_point)  

        line4_even_point = ( D, (j + 1) * 2 * D - D, H)
        line4_even_point_list.append(line4_even_point)


    # 将点坐标两两配对,形成线段两端坐标对
    for k in range(y_n):
        line1_points_1 = (line1_odd_point_list[k],line1_even_point_list[k])
        line1_points_2 = (line1_even_point_list[k],line1_odd_point_list[k+1])
        line1.append(line1_points_1)
        line1.append(line1_points_2)

        line2_points_1 = (line2_odd_point_list[k],line2_even_point_list[k])
        line2_points_2 = (line2_even_point_list[k],line2_odd_point_list[k+1])
        line2.append(line2_points_1)
        line2.append(line2_points_2)

        line3_points_1 = (line3_odd_point_list[k],line3_even_point_list[k])
        line3_points_2 = (line3_even_point_list[k],line3_odd_point_list[k+1])
        line3.append(line3_points_1)
        line3.append(line3_points_2)

        line4_points_1 = (line4_odd_point_list[k],line4_even_point_list[k])
        line4_points_2 = (line4_even_point_list[k],line4_odd_point_list[k+1])
        line4.append(line4_points_1)
        line4.append(line4_points_2)

    # 沿x轴复制折线
    
    for l in range(x_n + 1):

        for each1 in line1:
            newLine1 = ((each1[0][0] + 2 * D * l,each1[0][1],each1[0][2]),((each1[1][0] + 2 * D * l,each1[1][1],each1[1][2])))
            copy_4_lines.append(newLine1)

        for each2 in line2:
            newLine2 = ((each2[0][0] + 2 * D * l,each2[0][1],each2[0][2]),((each2[1][0] + 2 * D * l,each2[1][1],each2[1][2])))
            copy_4_lines.append(newLine2)  

    for m in range(x_n):

        for each3 in line3:
            newLine3 = ((each3[0][0] + 2 * D * m,each3[0][1],each3[0][2]),((each3[1][0] + 2 * D * m,each3[1][1],each3[1][2])))
            copy_4_lines.append(newLine3)

        for each4 in line4:
            newLine4 = ((each4[0][0] + 2 * D * m,each4[0][1],each4[0][2]),((each4[1][0] + 2 * D * m,each4[1][1],each4[1][2])))
            copy_4_lines.append(newLine4) 

    lines = line1 + line2 + line3 + line4 + copy_4_lines

    return lines

# 层内部的垂直线段
def generateVerticalLines():

    line_list = []
    line_odd_list = []
    line_even_list = []

    for i in range(x_n + 1):
        line_odd_down_point = (i * 2 * D, 0, 0)
        line_odd_up_point = (i * 2 * D, 0, H)
        line_odd = (line_odd_down_point, line_odd_up_point)
        line_odd_list.append(line_odd)

    for j in range(x_n):
        line_even_down_point = (j * 2 * D + D, D, 0)
        line_even_up_point = (j * 2 * D + D, D, H)
        line_even = (line_even_down_point, line_even_up_point)
        line_even_list.append(line_even)
    
    line_list = line_odd_list + line_even_list

    for m in range(y_n):
        for each_odd in line_odd_list:
            new_line_odd_down_point = (each_odd[0][0], each_odd[0][1] + (m + 1) * 2 * D, each_odd[0][2])
            new_line_odd_up_point = (each_odd[1][0], each_odd[1][1] + (m + 1) * 2 * D, each_odd[1][2])
            new_line_odd = (new_line_odd_down_point, new_line_odd_up_point)

            line_list.append(new_line_odd)
    
    for n in range(y_n - 1):
        for each_even in line_even_list:
            new_line_even_down_point = (each_even[0][0], each_even[0][1] + (n + 1) * 2 * D, each_even[0][2])
            new_line_even_up_point = (each_even[1][0], each_even[1][1] + (n + 1) * 2 * D, each_even[1][2])
            new_line_even = (new_line_even_down_point, new_line_even_up_point)

            line_list.append(new_line_even)
    
    return line_list

# 将绘制好的单层在z轴方向进行复制
def copyLayer(need_copy_layer):
    copy_layer = []
    move_distance = H + H - 2 * D / math.tan(theta)
    for i in range(z_n - 1):
        for each_line in need_copy_layer:
            copy_line_point_1 = (each_line[0][0],each_line[0][1],each_line[0][2] + (i + 1) * move_distance)
            copy_line_point_2 = (each_line[1][0],each_line[1][1],each_line[1][2] + (i + 1) * move_distance)
            copy_line = (copy_line_point_1,copy_line_point_2)
            copy_layer.append(copy_line)
    
    return copy_layer

def generateLayerLinks():

    layer_link_list = []
    layer_link_odd_list = []
    layer_link_even_list = []

    # 多层之间才有连杆
    if(z_n > 1):    

        for i in range(x_n + 1):

            layer_link_odd_down_point = (i * 2 * D, D, H - D / math.tan(theta))
            layer_link_odd_up_point = (i * 2 * D, D, H + H - D / math.tan(theta))
            layer_link_odd = (layer_link_odd_down_point, layer_link_odd_up_point)
            layer_link_odd_list.append(layer_link_odd)

        for j in range(x_n):

            layer_link_even_down_point = (j * 2 * D + D, 0, H - D / math.tan(theta))
            layer_link_even_up_point = (j * 2 * D + D, 0, H + H - D / math.tan(theta))
            layer_link_even = (layer_link_even_down_point, layer_link_even_up_point)
            layer_link_even_list.append(layer_link_even)
        
        layer_link_list = layer_link_odd_list + layer_link_even_list

        for m in range(y_n - 1):
            for each_odd in layer_link_odd_list:
                new_line_odd_down_point = (each_odd[0][0], each_odd[0][1] + (m + 1) * 2 * D, each_odd[0][2])
                new_line_odd_up_point = (each_odd[1][0], each_odd[1][1] + (m + 1) * 2 * D, each_odd[1][2])
                new_line_odd = (new_line_odd_down_point, new_line_odd_up_point)

                layer_link_list.append(new_line_odd)
        
        for n in range(y_n):
            for each_even in layer_link_even_list:
                new_line_even_down_point = (each_even[0][0], each_even[0][1] + (n + 1) * 2 * D, each_even[0][2])
                new_line_even_up_point = (each_even[1][0], each_even[1][1] + (n + 1) * 2 * D, each_even[1][2])
                new_line_even = (new_line_even_down_point, new_line_even_up_point)

                layer_link_list.append(new_line_even)

    return layer_link_list

def copyLayerLinks(need_copy_layer_links):

    layer_links = []

    move_distance = H + H - 2 * D / math.tan(theta)
    for i in range(z_n - 2):
        for each_line in need_copy_layer_links:
            copy_line_point_1 = (each_line[0][0],each_line[0][1],each_line[0][2] + (i + 1) * move_distance)
            copy_line_point_2 = (each_line[1][0],each_line[1][1],each_line[1][2] + (i + 1) * move_distance)
            copy_line = (copy_line_point_1,copy_line_point_2)
            layer_links.append(copy_line)
    
    return layer_links

# 生成底部竖直线
def generateBottomLines():

    bottom_line_list = []
    bottom_line_odd_list = []
    bottom_line_even_list = []

    for i in range(x_n + 1):

        bottom_line_odd_down_point = (i * 2 * D, D, D / math.tan(theta) - 0.5 * H)
        bottom_line_odd_up_point = (i * 2 * D, D, D / math.tan(theta))
        bottom_line_odd = (bottom_line_odd_down_point, bottom_line_odd_up_point)
        bottom_line_odd_list.append(bottom_line_odd)

    for j in range(x_n):

        bottom_line_even_down_point = (j * 2 * D + D, 0, D / math.tan(theta) - 0.5 * H)
        bottom_line_even_up_point = (j * 2 * D + D, 0, D / math.tan(theta))
        bottom_line_even = (bottom_line_even_down_point, bottom_line_even_up_point)
        bottom_line_even_list.append(bottom_line_even)
        
    bottom_line_list = bottom_line_odd_list + bottom_line_even_list

    for m in range(y_n - 1):
        for each_odd in bottom_line_odd_list:
            new_line_odd_down_point = (each_odd[0][0], each_odd[0][1] + (m + 1) * 2 * D, each_odd[0][2])
            new_line_odd_up_point = (each_odd[1][0], each_odd[1][1] + (m + 1) * 2 * D, each_odd[1][2])
            new_line_odd = (new_line_odd_down_point, new_line_odd_up_point)

            bottom_line_list.append(new_line_odd)
        
    for n in range(y_n):
        for each_even in bottom_line_even_list:
            new_line_even_down_point = (each_even[0][0], each_even[0][1] + (n + 1) * 2 * D, each_even[0][2])
            new_line_even_up_point = (each_even[1][0], each_even[1][1] + (n + 1) * 2 * D, each_even[1][2])
            new_line_even = (new_line_even_down_point, new_line_even_up_point)

            bottom_line_list.append(new_line_even)
    
    return bottom_line_list

# 生成顶部竖直线
def generateTopLines():

    top_line_list = []
    top_line_odd_list = []
    top_line_even_list = []

    for i in range(x_n + 1):

        top_line_odd_down_point = (i * 2 * D, D, H - D / math.tan(theta) + (z_n - 1) * (H + H - 2 * D / math.tan(theta)))
        top_line_odd_up_point = (i * 2 * D, D, H - D / math.tan(theta) + (z_n - 1) * (H + H - 2 * D / math.tan(theta)) + 0.5 * H)
        top_line_odd = (top_line_odd_down_point, top_line_odd_up_point)
        top_line_odd_list.append(top_line_odd)

    for j in range(x_n):

        top_line_even_down_point = (j * 2 * D + D, 0, H - D / math.tan(theta) + (z_n - 1) * (H + H - 2 * D / math.tan(theta)))
        top_line_even_up_point = (j * 2 * D + D, 0, H - D / math.tan(theta) + (z_n - 1) * (H + H - 2 * D / math.tan(theta)) + 0.5 * H)
        top_line_even = (top_line_even_down_point, top_line_even_up_point)
        top_line_even_list.append(top_line_even)
        
    top_line_list = top_line_odd_list + top_line_even_list

    for m in range(y_n - 1):
        for each_odd in top_line_odd_list:
            new_line_odd_down_point = (each_odd[0][0], each_odd[0][1] + (m + 1) * 2 * D, each_odd[0][2])
            new_line_odd_up_point = (each_odd[1][0], each_odd[1][1] + (m + 1) * 2 * D, each_odd[1][2])
            new_line_odd = (new_line_odd_down_point, new_line_odd_up_point)

            top_line_list.append(new_line_odd)
        
    for n in range(y_n):
        for each_even in top_line_even_list:
            new_line_even_down_point = (each_even[0][0], each_even[0][1] + (n + 1) * 2 * D, each_even[0][2])
            new_line_even_up_point = (each_even[1][0], each_even[1][1] + (n + 1) * 2 * D, each_even[1][2])
            new_line_even = (new_line_even_down_point, new_line_even_up_point)

            top_line_list.append(new_line_even)
    
    return top_line_list

# 生成x轴方向的折线
x_lines = generateXLines()

# 生成y轴方向的折线
y_lines = generateYLines()

# 生成单层内部的竖直线段
vertical_lines = generateVerticalLines()

# x,y和竖直方向的所有线段相加,得到单层结构
layer_lines = x_lines + y_lines + vertical_lines

# 将单层在z轴方向进行复制
copy_layer = copyLayer(layer_lines)

# 生成层与层之间的连杆
layer_links = generateLayerLinks()

# 将层与层之间的连杆在z轴方向进行复制
copy_layer_links = copyLayerLinks(layer_links)

# 生成顶部和底部的竖线
bottom_lines = generateBottomLines()
top_lines = generateTopLines()

# 将各个部分线段汇总
lines = layer_lines + copy_layer + layer_links + copy_layer_links + bottom_lines + top_lines

lines_tuple = tuple(lines)

print ("total lines: %d " % (len(lines_tuple)))

print('competed')

mdb.models['Model-1'].parts['Part-1'].WirePolyLine(mergeType=IMPRINT, meshable=ON, 
    points=lines_tuple)

mdb.models['Model-1'].parts['Part-1'].Set(edges=
    mdb.models['Model-1'].parts['Part-1'].edges.getSequenceFromMask(('[#3 ]', 
    ), ), name='Wire-2-Set-1')
# Save by cgp on 2021_06_01-17.37.10; build 6.14-5 2015_08_18-22.37.49 135153
木兰宽松许可证, 第2版 木兰宽松许可证, 第2版 2020年1月 http://license.coscl.org.cn/MulanPSL2 您对“软件”的复制、使用、修改及分发受木兰宽松许可证,第2版(“本许可证”)的如下条款的约束: 0. 定义 “软件”是指由“贡献”构成的许可在“本许可证”下的程序和相关文档的集合。 “贡献”是指由任一“贡献者”许可在“本许可证”下的受版权法保护的作品。 “贡献者”是指将受版权法保护的作品许可在“本许可证”下的自然人或“法人实体”。 “法人实体”是指提交贡献的机构及其“关联实体”。 “关联实体”是指,对“本许可证”下的行为方而言,控制、受控制或与其共同受控制的机构,此处的控制是指有受控方或共同受控方至少50%直接或间接的投票权、资金或其他有价证券。 1. 授予版权许可 每个“贡献者”根据“本许可证”授予您永久性的、全球性的、免费的、非独占的、不可撤销的版权许可,您可以复制、使用、修改、分发其“贡献”,不论修改与否。 2. 授予专利许可 每个“贡献者”根据“本许可证”授予您永久性的、全球性的、免费的、非独占的、不可撤销的(根据本条规定撤销除外)专利许可,供您制造、委托制造、使用、许诺销售、销售、进口其“贡献”或以其他方式转移其“贡献”。前述专利许可仅限于“贡献者”现在或将来拥有或控制的其“贡献”本身或其“贡献”与许可“贡献”时的“软件”结合而将必然会侵犯的专利权利要求,不包括对“贡献”的修改或包含“贡献”的其他结合。如果您或您的“关联实体”直接或间接地,就“软件”或其中的“贡献”对任何人发起专利侵权诉讼(包括反诉或交叉诉讼)或其他专利维权行动,指控其侵犯专利权,则“本许可证”授予您对“软件”的专利许可自您提起诉讼或发起维权行动之日终止。 3. 无商标许可 “本许可证”不提供对“贡献者”的商品名称、商标、服务标志或产品名称的商标许可,但您为满足第4条规定的声明义务而必须使用除外。 4. 分发限制 您可以在任何媒介中将“软件”以源程序形式或可执行形式重新分发,不论修改与否,但您必须向接收者提供“本许可证”的副本,并保留“软件”中的版权、商标、专利及免责声明。 5. 免责声明与责任限制 “软件”及其中的“贡献”在提供时不带任何明示或默示的担保。在任何情况下,“贡献者”或版权所有者不对任何人因使用“软件”或其中的“贡献”而引发的任何直接或间接损失承担责任,不论因何种原因导致或者基于何种法律理论,即使其曾被建议有此种损失的可能性。 6. 语言 “本许可证”以中英文双语表述,中英文版本具有同等法律效力。如果中英文版本存在任何冲突不一致,以中文版为准。 条款结束 如何将木兰宽松许可证,第2版,应用到您的软件 如果您希望将木兰宽松许可证,第2版,应用到您的新软件,为了方便接收者查阅,建议您完成如下三步: 1, 请您补充如下声明中的空白,包括软件名、软件的首次发表年份以及您作为版权人的名字; 2, 请您在软件包的一级目录下创建以“LICENSE”为名的文件,将整个许可证文本放入该文件中; 3, 请将如下声明文本放入每个源文件的头部注释中。 Copyright (c) [Year] [name of copyright holder] [Software Name] is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. Mulan Permissive Software License,Version 2 Mulan Permissive Software License,Version 2 (Mulan PSL v2) January 2020 http://license.coscl.org.cn/MulanPSL2 Your reproduction, use, modification and distribution of the Software shall be subject to Mulan PSL v2 (this License) with the following terms and conditions: 0. Definition Software means the program and related documents which are licensed under this License and comprise all Contribution(s). Contribution means the copyrightable work licensed by a particular Contributor under this License. Contributor means the Individual or Legal Entity who licenses its copyrightable work under this License. Legal Entity means the entity making a Contribution and all its Affiliates. Affiliates means entities that control, are controlled by, or are under common control with the acting entity under this License, ‘control’ means direct or indirect ownership of at least fifty percent (50%) of the voting power, capital or other securities of controlled or commonly controlled entity. 1. Grant of Copyright License Subject to the terms and conditions of this License, each Contributor hereby grants to you a perpetual, worldwide, royalty-free, non-exclusive, irrevocable copyright license to reproduce, use, modify, or distribute its Contribution, with modification or not. 2. Grant of Patent License Subject to the terms and conditions of this License, each Contributor hereby grants to you a perpetual, worldwide, royalty-free, non-exclusive, irrevocable (except for revocation under this Section) patent license to make, have made, use, offer for sale, sell, import or otherwise transfer its Contribution, where such patent license is only limited to the patent claims owned or controlled by such Contributor now or in future which will be necessarily infringed by its Contribution alone, or by combination of the Contribution with the Software to which the Contribution was contributed. The patent license shall not apply to any modification of the Contribution, and any other combination which includes the Contribution. If you or your Affiliates directly or indirectly institute patent litigation (including a cross claim or counterclaim in a litigation) or other patent enforcement activities against any individual or entity by alleging that the Software or any Contribution in it infringes patents, then any patent license granted to you under this License for the Software shall terminate as of the date such litigation or activity is filed or taken. 3. No Trademark License No trademark license is granted to use the trade names, trademarks, service marks, or product names of Contributor, except as required to fulfill notice requirements in Section 4. 4. Distribution Restriction You may distribute the Software in any medium with or without modification, whether in source or executable forms, provided that you provide recipients with a copy of this License and retain copyright, patent, trademark and disclaimer statements in the Software. 5. Disclaimer of Warranty and Limitation of Liability THE SOFTWARE AND CONTRIBUTION IN IT ARE PROVIDED WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ANY CONTRIBUTOR OR COPYRIGHT HOLDER BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE SOFTWARE OR THE CONTRIBUTION IN IT, NO MATTER HOW IT’S CAUSED OR BASED ON WHICH LEGAL THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 6. Language THIS LICENSE IS WRITTEN IN BOTH CHINESE AND ENGLISH, AND THE CHINESE VERSION AND ENGLISH VERSION SHALL HAVE THE SAME LEGAL EFFECT. IN THE CASE OF DIVERGENCE BETWEEN THE CHINESE AND ENGLISH VERSIONS, THE CHINESE VERSION SHALL PREVAIL. END OF THE TERMS AND CONDITIONS How to Apply the Mulan Permissive Software License,Version 2 (Mulan PSL v2) to Your Software To apply the Mulan PSL v2 to your work, for easy identification by recipients, you are suggested to complete following three steps: i Fill in the blanks in following statement, including insert your software name, the year of the first publication of your software, and your name identified as the copyright owner; ii Create a file named “LICENSE” which contains the whole context of this License in the first directory of your software package; iii Attach the statement to the appropriate annotated syntax at the beginning of each source file. Copyright (c) [Year] [name of copyright holder] [Software Name] is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details.

简介

abaqus生成三维内凹六边形框架插件 展开 收起
MulanPSL-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
1
https://gitee.com/diycp2015/auxetic-structure-abaqus-plugin.git
git@gitee.com:diycp2015/auxetic-structure-abaqus-plugin.git
diycp2015
auxetic-structure-abaqus-plugin
AuxeticStructureAbaqusPlugin
master

搜索帮助