代码拉取完成,页面将自动刷新
/* Asynchronous replication implementation.
*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
#include <sys/time.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/stat.h>
void replicationDiscardCachedMaster(void);
void replicationResurrectCachedMaster(int newfd);
void replicationSendAck(void);
void putSlaveOnline(client *slave);
int cancelReplicationHandshake(void);
/* --------------------------- Utility functions ---------------------------- */
/* Return the pointer to a string representing the slave ip:listening_port
* pair. Mostly useful for logging, since we want to log a slave using its
* IP address and its listening port which is more clear for the user, for
* example: "Closing connection with slave 10.1.2.3:6380". */
char *replicationGetSlaveName(client *c) {
static char buf[NET_PEER_ID_LEN];
char ip[NET_IP_STR_LEN];
ip[0] = '\0';
buf[0] = '\0';
if (c->slave_ip[0] != '\0' ||
anetPeerToString(c->fd,ip,sizeof(ip),NULL) != -1)
{
/* Note that the 'ip' buffer is always larger than 'c->slave_ip' */
if (c->slave_ip[0] != '\0') memcpy(ip,c->slave_ip,sizeof(c->slave_ip));
if (c->slave_listening_port)
anetFormatAddr(buf,sizeof(buf),ip,c->slave_listening_port);
else
snprintf(buf,sizeof(buf),"%s:<unknown-slave-port>",ip);
} else {
snprintf(buf,sizeof(buf),"client id #%llu",
(unsigned long long) c->id);
}
return buf;
}
/* ---------------------------------- MASTER -------------------------------- */
void createReplicationBacklog(void) {
serverAssert(server.repl_backlog == NULL);
server.repl_backlog = zmalloc(server.repl_backlog_size);
server.repl_backlog_histlen = 0;
server.repl_backlog_idx = 0;
/* We don't have any data inside our buffer, but virtually the first
* byte we have is the next byte that will be generated for the
* replication stream. */
server.repl_backlog_off = server.master_repl_offset+1;
}
/* This function is called when the user modifies the replication backlog
* size at runtime. It is up to the function to both update the
* server.repl_backlog_size and to resize the buffer and setup it so that
* it contains the same data as the previous one (possibly less data, but
* the most recent bytes, or the same data and more free space in case the
* buffer is enlarged). */
void resizeReplicationBacklog(long long newsize) {
if (newsize < CONFIG_REPL_BACKLOG_MIN_SIZE)
newsize = CONFIG_REPL_BACKLOG_MIN_SIZE;
if (server.repl_backlog_size == newsize) return;
server.repl_backlog_size = newsize;
if (server.repl_backlog != NULL) {
/* What we actually do is to flush the old buffer and realloc a new
* empty one. It will refill with new data incrementally.
* The reason is that copying a few gigabytes adds latency and even
* worse often we need to alloc additional space before freeing the
* old buffer. */
zfree(server.repl_backlog);
server.repl_backlog = zmalloc(server.repl_backlog_size);
server.repl_backlog_histlen = 0;
server.repl_backlog_idx = 0;
/* Next byte we have is... the next since the buffer is empty. */
server.repl_backlog_off = server.master_repl_offset+1;
}
}
void freeReplicationBacklog(void) {
serverAssert(listLength(server.slaves) == 0);
zfree(server.repl_backlog);
server.repl_backlog = NULL;
}
/* Add data to the replication backlog.
* This function also increments the global replication offset stored at
* server.master_repl_offset, because there is no case where we want to feed
* the backlog without incrementing the offset. */
void feedReplicationBacklog(void *ptr, size_t len) {
unsigned char *p = ptr;
server.master_repl_offset += len;
/* This is a circular buffer, so write as much data we can at every
* iteration and rewind the "idx" index if we reach the limit. */
while(len) {
size_t thislen = server.repl_backlog_size - server.repl_backlog_idx;
if (thislen > len) thislen = len;
memcpy(server.repl_backlog+server.repl_backlog_idx,p,thislen);
server.repl_backlog_idx += thislen;
if (server.repl_backlog_idx == server.repl_backlog_size)
server.repl_backlog_idx = 0;
len -= thislen;
p += thislen;
server.repl_backlog_histlen += thislen;
}
if (server.repl_backlog_histlen > server.repl_backlog_size)
server.repl_backlog_histlen = server.repl_backlog_size;
/* Set the offset of the first byte we have in the backlog. */
server.repl_backlog_off = server.master_repl_offset -
server.repl_backlog_histlen + 1;
}
/* Wrapper for feedReplicationBacklog() that takes Redis string objects
* as input. */
void feedReplicationBacklogWithObject(robj *o) {
char llstr[LONG_STR_SIZE];
void *p;
size_t len;
if (o->encoding == OBJ_ENCODING_INT) {
len = ll2string(llstr,sizeof(llstr),(long)o->ptr);
p = llstr;
} else {
len = sdslen(o->ptr);
p = o->ptr;
}
feedReplicationBacklog(p,len);
}
/* Propagate write commands to slaves, and populate the replication backlog
* as well. This function is used if the instance is a master: we use
* the commands received by our clients in order to create the replication
* stream. Instead if the instance is a slave and has sub-slaves attached,
* we use replicationFeedSlavesFromMaster() */
void replicationFeedSlaves(list *slaves, int dictid, robj **argv, int argc) {
listNode *ln;
listIter li;
int j, len;
char llstr[LONG_STR_SIZE];
/* If the instance is not a top level master, return ASAP: we'll just proxy
* the stream of data we receive from our master instead, in order to
* propagate *identical* replication stream. In this way this slave can
* advertise the same replication ID as the master (since it shares the
* master replication history and has the same backlog and offsets). */
if (server.masterhost != NULL) return;
/* If there aren't slaves, and there is no backlog buffer to populate,
* we can return ASAP. */
if (server.repl_backlog == NULL && listLength(slaves) == 0) return;
/* We can't have slaves attached and no backlog. */
serverAssert(!(listLength(slaves) != 0 && server.repl_backlog == NULL));
/* Send SELECT command to every slave if needed. */
if (server.slaveseldb != dictid) {
robj *selectcmd;
/* For a few DBs we have pre-computed SELECT command. */
if (dictid >= 0 && dictid < PROTO_SHARED_SELECT_CMDS) {
selectcmd = shared.select[dictid];
} else {
int dictid_len;
dictid_len = ll2string(llstr,sizeof(llstr),dictid);
selectcmd = createObject(OBJ_STRING,
sdscatprintf(sdsempty(),
"*2\r\n$6\r\nSELECT\r\n$%d\r\n%s\r\n",
dictid_len, llstr));
}
/* Add the SELECT command into the backlog. */
if (server.repl_backlog) feedReplicationBacklogWithObject(selectcmd);
/* Send it to slaves. */
listRewind(slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) continue;
addReply(slave,selectcmd);
}
if (dictid < 0 || dictid >= PROTO_SHARED_SELECT_CMDS)
decrRefCount(selectcmd);
}
server.slaveseldb = dictid;
/* Write the command to the replication backlog if any. */
if (server.repl_backlog) {
char aux[LONG_STR_SIZE+3];
/* Add the multi bulk reply length. */
aux[0] = '*';
len = ll2string(aux+1,sizeof(aux)-1,argc);
aux[len+1] = '\r';
aux[len+2] = '\n';
feedReplicationBacklog(aux,len+3);
for (j = 0; j < argc; j++) {
long objlen = stringObjectLen(argv[j]);
/* We need to feed the buffer with the object as a bulk reply
* not just as a plain string, so create the $..CRLF payload len
* and add the final CRLF */
aux[0] = '$';
len = ll2string(aux+1,sizeof(aux)-1,objlen);
aux[len+1] = '\r';
aux[len+2] = '\n';
feedReplicationBacklog(aux,len+3);
feedReplicationBacklogWithObject(argv[j]);
feedReplicationBacklog(aux+len+1,2);
}
}
/* Write the command to every slave. */
listRewind(slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
/* Don't feed slaves that are still waiting for BGSAVE to start */
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) continue;
/* Feed slaves that are waiting for the initial SYNC (so these commands
* are queued in the output buffer until the initial SYNC completes),
* or are already in sync with the master. */
/* Add the multi bulk length. */
addReplyMultiBulkLen(slave,argc);
/* Finally any additional argument that was not stored inside the
* static buffer if any (from j to argc). */
for (j = 0; j < argc; j++)
addReplyBulk(slave,argv[j]);
}
}
/* This function is used in order to proxy what we receive from our master
* to our sub-slaves. */
#include <ctype.h>
void replicationFeedSlavesFromMasterStream(list *slaves, char *buf, size_t buflen) {
listNode *ln;
listIter li;
/* Debugging: this is handy to see the stream sent from master
* to slaves. Disabled with if(0). */
if (0) {
printf("%zu:",buflen);
for (size_t j = 0; j < buflen; j++) {
printf("%c", isprint(buf[j]) ? buf[j] : '.');
}
printf("\n");
}
if (server.repl_backlog) feedReplicationBacklog(buf,buflen);
listRewind(slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
/* Don't feed slaves that are still waiting for BGSAVE to start */
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) continue;
addReplyString(slave,buf,buflen);
}
}
void replicationFeedMonitors(client *c, list *monitors, int dictid, robj **argv, int argc) {
listNode *ln;
listIter li;
int j;
sds cmdrepr = sdsnew("+");
robj *cmdobj;
struct timeval tv;
gettimeofday(&tv,NULL);
cmdrepr = sdscatprintf(cmdrepr,"%ld.%06ld ",(long)tv.tv_sec,(long)tv.tv_usec);
if (c->flags & CLIENT_LUA) {
cmdrepr = sdscatprintf(cmdrepr,"[%d lua] ",dictid);
} else if (c->flags & CLIENT_UNIX_SOCKET) {
cmdrepr = sdscatprintf(cmdrepr,"[%d unix:%s] ",dictid,server.unixsocket);
} else {
cmdrepr = sdscatprintf(cmdrepr,"[%d %s] ",dictid,getClientPeerId(c));
}
for (j = 0; j < argc; j++) {
if (argv[j]->encoding == OBJ_ENCODING_INT) {
cmdrepr = sdscatprintf(cmdrepr, "\"%ld\"", (long)argv[j]->ptr);
} else {
cmdrepr = sdscatrepr(cmdrepr,(char*)argv[j]->ptr,
sdslen(argv[j]->ptr));
}
if (j != argc-1)
cmdrepr = sdscatlen(cmdrepr," ",1);
}
cmdrepr = sdscatlen(cmdrepr,"\r\n",2);
cmdobj = createObject(OBJ_STRING,cmdrepr);
listRewind(monitors,&li);
while((ln = listNext(&li))) {
client *monitor = ln->value;
addReply(monitor,cmdobj);
}
decrRefCount(cmdobj);
}
/* Feed the slave 'c' with the replication backlog starting from the
* specified 'offset' up to the end of the backlog. */
long long addReplyReplicationBacklog(client *c, long long offset) {
long long j, skip, len;
serverLog(LL_DEBUG, "[PSYNC] Slave request offset: %lld", offset);
if (server.repl_backlog_histlen == 0) {
serverLog(LL_DEBUG, "[PSYNC] Backlog history len is zero");
return 0;
}
serverLog(LL_DEBUG, "[PSYNC] Backlog size: %lld",
server.repl_backlog_size);
serverLog(LL_DEBUG, "[PSYNC] First byte: %lld",
server.repl_backlog_off);
serverLog(LL_DEBUG, "[PSYNC] History len: %lld",
server.repl_backlog_histlen);
serverLog(LL_DEBUG, "[PSYNC] Current index: %lld",
server.repl_backlog_idx);
/* Compute the amount of bytes we need to discard. */
skip = offset - server.repl_backlog_off;
serverLog(LL_DEBUG, "[PSYNC] Skipping: %lld", skip);
/* Point j to the oldest byte, that is actually our
* server.repl_backlog_off byte. */
j = (server.repl_backlog_idx +
(server.repl_backlog_size-server.repl_backlog_histlen)) %
server.repl_backlog_size;
serverLog(LL_DEBUG, "[PSYNC] Index of first byte: %lld", j);
/* Discard the amount of data to seek to the specified 'offset'. */
j = (j + skip) % server.repl_backlog_size;
/* Feed slave with data. Since it is a circular buffer we have to
* split the reply in two parts if we are cross-boundary. */
len = server.repl_backlog_histlen - skip;
serverLog(LL_DEBUG, "[PSYNC] Reply total length: %lld", len);
while(len) {
long long thislen =
((server.repl_backlog_size - j) < len) ?
(server.repl_backlog_size - j) : len;
serverLog(LL_DEBUG, "[PSYNC] addReply() length: %lld", thislen);
addReplySds(c,sdsnewlen(server.repl_backlog + j, thislen));
len -= thislen;
j = 0;
}
return server.repl_backlog_histlen - skip;
}
/* Return the offset to provide as reply to the PSYNC command received
* from the slave. The returned value is only valid immediately after
* the BGSAVE process started and before executing any other command
* from clients. */
long long getPsyncInitialOffset(void) {
return server.master_repl_offset;
}
/* Send a FULLRESYNC reply in the specific case of a full resynchronization,
* as a side effect setup the slave for a full sync in different ways:
*
* 1) Remember, into the slave client structure, the replication offset
* we sent here, so that if new slaves will later attach to the same
* background RDB saving process (by duplicating this client output
* buffer), we can get the right offset from this slave.
* 2) Set the replication state of the slave to WAIT_BGSAVE_END so that
* we start accumulating differences from this point.
* 3) Force the replication stream to re-emit a SELECT statement so
* the new slave incremental differences will start selecting the
* right database number.
*
* Normally this function should be called immediately after a successful
* BGSAVE for replication was started, or when there is one already in
* progress that we attached our slave to. */
int replicationSetupSlaveForFullResync(client *slave, long long offset) {
char buf[128];
int buflen;
slave->psync_initial_offset = offset;
slave->replstate = SLAVE_STATE_WAIT_BGSAVE_END;
/* We are going to accumulate the incremental changes for this
* slave as well. Set slaveseldb to -1 in order to force to re-emit
* a SELECT statement in the replication stream. */
server.slaveseldb = -1;
/* Don't send this reply to slaves that approached us with
* the old SYNC command. */
if (!(slave->flags & CLIENT_PRE_PSYNC)) {
buflen = snprintf(buf,sizeof(buf),"+FULLRESYNC %s %lld\r\n",
server.replid,offset);
if (write(slave->fd,buf,buflen) != buflen) {
freeClientAsync(slave);
return C_ERR;
}
}
return C_OK;
}
/* This function handles the PSYNC command from the point of view of a
* master receiving a request for partial resynchronization.
*
* On success return C_OK, otherwise C_ERR is returned and we proceed
* with the usual full resync. */
int masterTryPartialResynchronization(client *c) {
long long psync_offset, psync_len;
char *master_replid = c->argv[1]->ptr;
char buf[128];
int buflen;
/* Parse the replication offset asked by the slave. Go to full sync
* on parse error: this should never happen but we try to handle
* it in a robust way compared to aborting. */
if (getLongLongFromObjectOrReply(c,c->argv[2],&psync_offset,NULL) !=
C_OK) goto need_full_resync;
/* Is the replication ID of this master the same advertised by the wannabe
* slave via PSYNC? If the replication ID changed this master has a
* different replication history, and there is no way to continue.
*
* Note that there are two potentially valid replication IDs: the ID1
* and the ID2. The ID2 however is only valid up to a specific offset. */
if (strcasecmp(master_replid, server.replid) &&
(strcasecmp(master_replid, server.replid2) ||
psync_offset > server.second_replid_offset))
{
/* Run id "?" is used by slaves that want to force a full resync. */
if (master_replid[0] != '?') {
if (strcasecmp(master_replid, server.replid) &&
strcasecmp(master_replid, server.replid2))
{
serverLog(LL_NOTICE,"Partial resynchronization not accepted: "
"Replication ID mismatch (Slave asked for '%s', my "
"replication IDs are '%s' and '%s')",
master_replid, server.replid, server.replid2);
} else {
serverLog(LL_NOTICE,"Partial resynchronization not accepted: "
"Requested offset for second ID was %lld, but I can reply "
"up to %lld", psync_offset, server.second_replid_offset);
}
} else {
serverLog(LL_NOTICE,"Full resync requested by slave %s",
replicationGetSlaveName(c));
}
goto need_full_resync;
}
/* We still have the data our slave is asking for? */
if (!server.repl_backlog ||
psync_offset < server.repl_backlog_off ||
psync_offset > (server.repl_backlog_off + server.repl_backlog_histlen))
{
serverLog(LL_NOTICE,
"Unable to partial resync with slave %s for lack of backlog (Slave request was: %lld).", replicationGetSlaveName(c), psync_offset);
if (psync_offset > server.master_repl_offset) {
serverLog(LL_WARNING,
"Warning: slave %s tried to PSYNC with an offset that is greater than the master replication offset.", replicationGetSlaveName(c));
}
goto need_full_resync;
}
/* If we reached this point, we are able to perform a partial resync:
* 1) Set client state to make it a slave.
* 2) Inform the client we can continue with +CONTINUE
* 3) Send the backlog data (from the offset to the end) to the slave. */
c->flags |= CLIENT_SLAVE;
c->replstate = SLAVE_STATE_ONLINE;
c->repl_ack_time = server.unixtime;
c->repl_put_online_on_ack = 0;
listAddNodeTail(server.slaves,c);
/* We can't use the connection buffers since they are used to accumulate
* new commands at this stage. But we are sure the socket send buffer is
* empty so this write will never fail actually. */
if (c->slave_capa & SLAVE_CAPA_PSYNC2) {
buflen = snprintf(buf,sizeof(buf),"+CONTINUE %s\r\n", server.replid);
} else {
buflen = snprintf(buf,sizeof(buf),"+CONTINUE\r\n");
}
if (write(c->fd,buf,buflen) != buflen) {
freeClientAsync(c);
return C_OK;
}
psync_len = addReplyReplicationBacklog(c,psync_offset);
serverLog(LL_NOTICE,
"Partial resynchronization request from %s accepted. Sending %lld bytes of backlog starting from offset %lld.",
replicationGetSlaveName(c),
psync_len, psync_offset);
/* Note that we don't need to set the selected DB at server.slaveseldb
* to -1 to force the master to emit SELECT, since the slave already
* has this state from the previous connection with the master. */
refreshGoodSlavesCount();
return C_OK; /* The caller can return, no full resync needed. */
need_full_resync:
/* We need a full resync for some reason... Note that we can't
* reply to PSYNC right now if a full SYNC is needed. The reply
* must include the master offset at the time the RDB file we transfer
* is generated, so we need to delay the reply to that moment. */
return C_ERR;
}
/* Start a BGSAVE for replication goals, which is, selecting the disk or
* socket target depending on the configuration, and making sure that
* the script cache is flushed before to start.
*
* The mincapa argument is the bitwise AND among all the slaves capabilities
* of the slaves waiting for this BGSAVE, so represents the slave capabilities
* all the slaves support. Can be tested via SLAVE_CAPA_* macros.
*
* Side effects, other than starting a BGSAVE:
*
* 1) Handle the slaves in WAIT_START state, by preparing them for a full
* sync if the BGSAVE was succesfully started, or sending them an error
* and dropping them from the list of slaves.
*
* 2) Flush the Lua scripting script cache if the BGSAVE was actually
* started.
*
* Returns C_OK on success or C_ERR otherwise. */
int startBgsaveForReplication(int mincapa) {
int retval;
int socket_target = server.repl_diskless_sync && (mincapa & SLAVE_CAPA_EOF);
listIter li;
listNode *ln;
serverLog(LL_NOTICE,"Starting BGSAVE for SYNC with target: %s",
socket_target ? "slaves sockets" : "disk");
rdbSaveInfo rsi, *rsiptr;
rsiptr = rdbPopulateSaveInfo(&rsi);
/* Only do rdbSave* when rsiptr is not NULL,
* otherwise slave will miss repl-stream-db. */
if (rsiptr) {
if (socket_target)
retval = rdbSaveToSlavesSockets(rsiptr);
else
retval = rdbSaveBackground(server.rdb_filename,rsiptr);
} else {
serverLog(LL_WARNING,"BGSAVE for replication: replication information not available, can't generate the RDB file right now. Try later.");
retval = C_ERR;
}
/* If we failed to BGSAVE, remove the slaves waiting for a full
* resynchorinization from the list of salves, inform them with
* an error about what happened, close the connection ASAP. */
if (retval == C_ERR) {
serverLog(LL_WARNING,"BGSAVE for replication failed");
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
slave->flags &= ~CLIENT_SLAVE;
listDelNode(server.slaves,ln);
addReplyError(slave,
"BGSAVE failed, replication can't continue");
slave->flags |= CLIENT_CLOSE_AFTER_REPLY;
}
}
return retval;
}
/* If the target is socket, rdbSaveToSlavesSockets() already setup
* the salves for a full resync. Otherwise for disk target do it now.*/
if (!socket_target) {
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
replicationSetupSlaveForFullResync(slave,
getPsyncInitialOffset());
}
}
}
/* Flush the script cache, since we need that slave differences are
* accumulated without requiring slaves to match our cached scripts. */
if (retval == C_OK) replicationScriptCacheFlush();
return retval;
}
/* SYNC and PSYNC command implemenation. */
void syncCommand(client *c) {
/* ignore SYNC if already slave or in monitor mode */
if (c->flags & CLIENT_SLAVE) return;
/* Refuse SYNC requests if we are a slave but the link with our master
* is not ok... */
if (server.masterhost && server.repl_state != REPL_STATE_CONNECTED) {
addReplySds(c,sdsnew("-NOMASTERLINK Can't SYNC while not connected with my master\r\n"));
return;
}
/* SYNC can't be issued when the server has pending data to send to
* the client about already issued commands. We need a fresh reply
* buffer registering the differences between the BGSAVE and the current
* dataset, so that we can copy to other slaves if needed. */
if (clientHasPendingReplies(c)) {
addReplyError(c,"SYNC and PSYNC are invalid with pending output");
return;
}
serverLog(LL_NOTICE,"Slave %s asks for synchronization",
replicationGetSlaveName(c));
/* Try a partial resynchronization if this is a PSYNC command.
* If it fails, we continue with usual full resynchronization, however
* when this happens masterTryPartialResynchronization() already
* replied with:
*
* +FULLRESYNC <replid> <offset>
*
* So the slave knows the new replid and offset to try a PSYNC later
* if the connection with the master is lost. */
if (!strcasecmp(c->argv[0]->ptr,"psync")) {
if (masterTryPartialResynchronization(c) == C_OK) {
server.stat_sync_partial_ok++;
return; /* No full resync needed, return. */
} else {
char *master_replid = c->argv[1]->ptr;
/* Increment stats for failed PSYNCs, but only if the
* replid is not "?", as this is used by slaves to force a full
* resync on purpose when they are not albe to partially
* resync. */
if (master_replid[0] != '?') server.stat_sync_partial_err++;
}
} else {
/* If a slave uses SYNC, we are dealing with an old implementation
* of the replication protocol (like redis-cli --slave). Flag the client
* so that we don't expect to receive REPLCONF ACK feedbacks. */
c->flags |= CLIENT_PRE_PSYNC;
}
/* Full resynchronization. */
server.stat_sync_full++;
/* Setup the slave as one waiting for BGSAVE to start. The following code
* paths will change the state if we handle the slave differently. */
c->replstate = SLAVE_STATE_WAIT_BGSAVE_START;
if (server.repl_disable_tcp_nodelay)
anetDisableTcpNoDelay(NULL, c->fd); /* Non critical if it fails. */
c->repldbfd = -1;
c->flags |= CLIENT_SLAVE;
listAddNodeTail(server.slaves,c);
/* Create the replication backlog if needed. */
if (listLength(server.slaves) == 1 && server.repl_backlog == NULL) {
/* When we create the backlog from scratch, we always use a new
* replication ID and clear the ID2, since there is no valid
* past history. */
changeReplicationId();
clearReplicationId2();
createReplicationBacklog();
}
/* CASE 1: BGSAVE is in progress, with disk target. */
if (server.rdb_child_pid != -1 &&
server.rdb_child_type == RDB_CHILD_TYPE_DISK)
{
/* Ok a background save is in progress. Let's check if it is a good
* one for replication, i.e. if there is another slave that is
* registering differences since the server forked to save. */
client *slave;
listNode *ln;
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END) break;
}
/* To attach this slave, we check that it has at least all the
* capabilities of the slave that triggered the current BGSAVE. */
if (ln && ((c->slave_capa & slave->slave_capa) == slave->slave_capa)) {
/* Perfect, the server is already registering differences for
* another slave. Set the right state, and copy the buffer. */
copyClientOutputBuffer(c,slave);
replicationSetupSlaveForFullResync(c,slave->psync_initial_offset);
serverLog(LL_NOTICE,"Waiting for end of BGSAVE for SYNC");
} else {
/* No way, we need to wait for the next BGSAVE in order to
* register differences. */
serverLog(LL_NOTICE,"Can't attach the slave to the current BGSAVE. Waiting for next BGSAVE for SYNC");
}
/* CASE 2: BGSAVE is in progress, with socket target. */
} else if (server.rdb_child_pid != -1 &&
server.rdb_child_type == RDB_CHILD_TYPE_SOCKET)
{
/* There is an RDB child process but it is writing directly to
* children sockets. We need to wait for the next BGSAVE
* in order to synchronize. */
serverLog(LL_NOTICE,"Current BGSAVE has socket target. Waiting for next BGSAVE for SYNC");
/* CASE 3: There is no BGSAVE is progress. */
} else {
if (server.repl_diskless_sync && (c->slave_capa & SLAVE_CAPA_EOF)) {
/* Diskless replication RDB child is created inside
* replicationCron() since we want to delay its start a
* few seconds to wait for more slaves to arrive. */
if (server.repl_diskless_sync_delay)
serverLog(LL_NOTICE,"Delay next BGSAVE for diskless SYNC");
} else {
/* Target is disk (or the slave is not capable of supporting
* diskless replication) and we don't have a BGSAVE in progress,
* let's start one. */
if (server.aof_child_pid == -1) {
startBgsaveForReplication(c->slave_capa);
} else {
serverLog(LL_NOTICE,
"No BGSAVE in progress, but an AOF rewrite is active. "
"BGSAVE for replication delayed");
}
}
}
return;
}
/* REPLCONF <option> <value> <option> <value> ...
* This command is used by a slave in order to configure the replication
* process before starting it with the SYNC command.
*
* Currently the only use of this command is to communicate to the master
* what is the listening port of the Slave redis instance, so that the
* master can accurately list slaves and their listening ports in
* the INFO output.
*
* In the future the same command can be used in order to configure
* the replication to initiate an incremental replication instead of a
* full resync. */
void replconfCommand(client *c) {
int j;
if ((c->argc % 2) == 0) {
/* Number of arguments must be odd to make sure that every
* option has a corresponding value. */
addReply(c,shared.syntaxerr);
return;
}
/* Process every option-value pair. */
for (j = 1; j < c->argc; j+=2) {
if (!strcasecmp(c->argv[j]->ptr,"listening-port")) {
long port;
if ((getLongFromObjectOrReply(c,c->argv[j+1],
&port,NULL) != C_OK))
return;
c->slave_listening_port = port;
} else if (!strcasecmp(c->argv[j]->ptr,"ip-address")) {
sds ip = c->argv[j+1]->ptr;
if (sdslen(ip) < sizeof(c->slave_ip)) {
memcpy(c->slave_ip,ip,sdslen(ip)+1);
} else {
addReplyErrorFormat(c,"REPLCONF ip-address provided by "
"slave instance is too long: %zd bytes", sdslen(ip));
return;
}
} else if (!strcasecmp(c->argv[j]->ptr,"capa")) {
/* Ignore capabilities not understood by this master. */
if (!strcasecmp(c->argv[j+1]->ptr,"eof"))
c->slave_capa |= SLAVE_CAPA_EOF;
else if (!strcasecmp(c->argv[j+1]->ptr,"psync2"))
c->slave_capa |= SLAVE_CAPA_PSYNC2;
} else if (!strcasecmp(c->argv[j]->ptr,"ack")) {
/* REPLCONF ACK is used by slave to inform the master the amount
* of replication stream that it processed so far. It is an
* internal only command that normal clients should never use. */
long long offset;
if (!(c->flags & CLIENT_SLAVE)) return;
if ((getLongLongFromObject(c->argv[j+1], &offset) != C_OK))
return;
if (offset > c->repl_ack_off)
c->repl_ack_off = offset;
c->repl_ack_time = server.unixtime;
/* If this was a diskless replication, we need to really put
* the slave online when the first ACK is received (which
* confirms slave is online and ready to get more data). */
if (c->repl_put_online_on_ack && c->replstate == SLAVE_STATE_ONLINE)
putSlaveOnline(c);
/* Note: this command does not reply anything! */
return;
} else if (!strcasecmp(c->argv[j]->ptr,"getack")) {
/* REPLCONF GETACK is used in order to request an ACK ASAP
* to the slave. */
if (server.masterhost && server.master) replicationSendAck();
return;
} else {
addReplyErrorFormat(c,"Unrecognized REPLCONF option: %s",
(char*)c->argv[j]->ptr);
return;
}
}
addReply(c,shared.ok);
}
/* This function puts a slave in the online state, and should be called just
* after a slave received the RDB file for the initial synchronization, and
* we are finally ready to send the incremental stream of commands.
*
* It does a few things:
*
* 1) Put the slave in ONLINE state (useless when the function is called
* because state is already ONLINE but repl_put_online_on_ack is true).
* 2) Make sure the writable event is re-installed, since calling the SYNC
* command disables it, so that we can accumulate output buffer without
* sending it to the slave.
* 3) Update the count of good slaves. */
void putSlaveOnline(client *slave) {
slave->replstate = SLAVE_STATE_ONLINE;
slave->repl_put_online_on_ack = 0;
slave->repl_ack_time = server.unixtime; /* Prevent false timeout. */
if (aeCreateFileEvent(server.el, slave->fd, AE_WRITABLE,
sendReplyToClient, slave) == AE_ERR) {
serverLog(LL_WARNING,"Unable to register writable event for slave bulk transfer: %s", strerror(errno));
freeClient(slave);
return;
}
refreshGoodSlavesCount();
serverLog(LL_NOTICE,"Synchronization with slave %s succeeded",
replicationGetSlaveName(slave));
}
void sendBulkToSlave(aeEventLoop *el, int fd, void *privdata, int mask) {
client *slave = privdata;
UNUSED(el);
UNUSED(mask);
char buf[PROTO_IOBUF_LEN];
ssize_t nwritten, buflen;
/* Before sending the RDB file, we send the preamble as configured by the
* replication process. Currently the preamble is just the bulk count of
* the file in the form "$<length>\r\n". */
if (slave->replpreamble) {
nwritten = write(fd,slave->replpreamble,sdslen(slave->replpreamble));
if (nwritten == -1) {
serverLog(LL_VERBOSE,"Write error sending RDB preamble to slave: %s",
strerror(errno));
freeClient(slave);
return;
}
server.stat_net_output_bytes += nwritten;
sdsrange(slave->replpreamble,nwritten,-1);
if (sdslen(slave->replpreamble) == 0) {
sdsfree(slave->replpreamble);
slave->replpreamble = NULL;
/* fall through sending data. */
} else {
return;
}
}
/* If the preamble was already transfered, send the RDB bulk data. */
lseek(slave->repldbfd,slave->repldboff,SEEK_SET);
buflen = read(slave->repldbfd,buf,PROTO_IOBUF_LEN);
if (buflen <= 0) {
serverLog(LL_WARNING,"Read error sending DB to slave: %s",
(buflen == 0) ? "premature EOF" : strerror(errno));
freeClient(slave);
return;
}
if ((nwritten = write(fd,buf,buflen)) == -1) {
if (errno != EAGAIN) {
serverLog(LL_WARNING,"Write error sending DB to slave: %s",
strerror(errno));
freeClient(slave);
}
return;
}
slave->repldboff += nwritten;
server.stat_net_output_bytes += nwritten;
if (slave->repldboff == slave->repldbsize) {
close(slave->repldbfd);
slave->repldbfd = -1;
aeDeleteFileEvent(server.el,slave->fd,AE_WRITABLE);
putSlaveOnline(slave);
}
}
/* This function is called at the end of every background saving,
* or when the replication RDB transfer strategy is modified from
* disk to socket or the other way around.
*
* The goal of this function is to handle slaves waiting for a successful
* background saving in order to perform non-blocking synchronization, and
* to schedule a new BGSAVE if there are slaves that attached while a
* BGSAVE was in progress, but it was not a good one for replication (no
* other slave was accumulating differences).
*
* The argument bgsaveerr is C_OK if the background saving succeeded
* otherwise C_ERR is passed to the function.
* The 'type' argument is the type of the child that terminated
* (if it had a disk or socket target). */
void updateSlavesWaitingBgsave(int bgsaveerr, int type) {
listNode *ln;
int startbgsave = 0;
int mincapa = -1;
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
startbgsave = 1;
mincapa = (mincapa == -1) ? slave->slave_capa :
(mincapa & slave->slave_capa);
} else if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END) {
struct redis_stat buf;
/* If this was an RDB on disk save, we have to prepare to send
* the RDB from disk to the slave socket. Otherwise if this was
* already an RDB -> Slaves socket transfer, used in the case of
* diskless replication, our work is trivial, we can just put
* the slave online. */
if (type == RDB_CHILD_TYPE_SOCKET) {
serverLog(LL_NOTICE,
"Streamed RDB transfer with slave %s succeeded (socket). Waiting for REPLCONF ACK from slave to enable streaming",
replicationGetSlaveName(slave));
/* Note: we wait for a REPLCONF ACK message from slave in
* order to really put it online (install the write handler
* so that the accumulated data can be transfered). However
* we change the replication state ASAP, since our slave
* is technically online now. */
slave->replstate = SLAVE_STATE_ONLINE;
slave->repl_put_online_on_ack = 1;
slave->repl_ack_time = server.unixtime; /* Timeout otherwise. */
} else {
if (bgsaveerr != C_OK) {
freeClient(slave);
serverLog(LL_WARNING,"SYNC failed. BGSAVE child returned an error");
continue;
}
if ((slave->repldbfd = open(server.rdb_filename,O_RDONLY)) == -1 ||
redis_fstat(slave->repldbfd,&buf) == -1) {
freeClient(slave);
serverLog(LL_WARNING,"SYNC failed. Can't open/stat DB after BGSAVE: %s", strerror(errno));
continue;
}
slave->repldboff = 0;
slave->repldbsize = buf.st_size;
slave->replstate = SLAVE_STATE_SEND_BULK;
slave->replpreamble = sdscatprintf(sdsempty(),"$%lld\r\n",
(unsigned long long) slave->repldbsize);
aeDeleteFileEvent(server.el,slave->fd,AE_WRITABLE);
if (aeCreateFileEvent(server.el, slave->fd, AE_WRITABLE, sendBulkToSlave, slave) == AE_ERR) {
freeClient(slave);
continue;
}
}
}
}
if (startbgsave) startBgsaveForReplication(mincapa);
}
/* Change the current instance replication ID with a new, random one.
* This will prevent successful PSYNCs between this master and other
* slaves, so the command should be called when something happens that
* alters the current story of the dataset. */
void changeReplicationId(void) {
getRandomHexChars(server.replid,CONFIG_RUN_ID_SIZE);
server.replid[CONFIG_RUN_ID_SIZE] = '\0';
}
/* Clear (invalidate) the secondary replication ID. This happens, for
* example, after a full resynchronization, when we start a new replication
* history. */
void clearReplicationId2(void) {
memset(server.replid2,'0',sizeof(server.replid));
server.replid2[CONFIG_RUN_ID_SIZE] = '\0';
server.second_replid_offset = -1;
}
/* Use the current replication ID / offset as secondary replication
* ID, and change the current one in order to start a new history.
* This should be used when an instance is switched from slave to master
* so that it can serve PSYNC requests performed using the master
* replication ID. */
void shiftReplicationId(void) {
memcpy(server.replid2,server.replid,sizeof(server.replid));
/* We set the second replid offset to the master offset + 1, since
* the slave will ask for the first byte it has not yet received, so
* we need to add one to the offset: for example if, as a slave, we are
* sure we have the same history as the master for 50 bytes, after we
* are turned into a master, we can accept a PSYNC request with offset
* 51, since the slave asking has the same history up to the 50th
* byte, and is asking for the new bytes starting at offset 51. */
server.second_replid_offset = server.master_repl_offset+1;
changeReplicationId();
serverLog(LL_WARNING,"Setting secondary replication ID to %s, valid up to offset: %lld. New replication ID is %s", server.replid2, server.second_replid_offset, server.replid);
}
/* ----------------------------------- SLAVE -------------------------------- */
/* Returns 1 if the given replication state is a handshake state,
* 0 otherwise. */
int slaveIsInHandshakeState(void) {
return server.repl_state >= REPL_STATE_RECEIVE_PONG &&
server.repl_state <= REPL_STATE_RECEIVE_PSYNC;
}
/* Avoid the master to detect the slave is timing out while loading the
* RDB file in initial synchronization. We send a single newline character
* that is valid protocol but is guaranteed to either be sent entierly or
* not, since the byte is indivisible.
*
* The function is called in two contexts: while we flush the current
* data with emptyDb(), and while we load the new data received as an
* RDB file from the master. */
void replicationSendNewlineToMaster(void) {
static time_t newline_sent;
if (time(NULL) != newline_sent) {
newline_sent = time(NULL);
if (write(server.repl_transfer_s,"\n",1) == -1) {
/* Pinging back in this stage is best-effort. */
}
}
}
/* Callback used by emptyDb() while flushing away old data to load
* the new dataset received by the master. */
void replicationEmptyDbCallback(void *privdata) {
UNUSED(privdata);
replicationSendNewlineToMaster();
}
/* Once we have a link with the master and the synchroniziation was
* performed, this function materializes the master client we store
* at server.master, starting from the specified file descriptor. */
void replicationCreateMasterClient(int fd, int dbid) {
server.master = createClient(fd);
server.master->flags |= CLIENT_MASTER;
server.master->authenticated = 1;
server.master->reploff = server.master_initial_offset;
server.master->read_reploff = server.master->reploff;
memcpy(server.master->replid, server.master_replid,
sizeof(server.master_replid));
/* If master offset is set to -1, this master is old and is not
* PSYNC capable, so we flag it accordingly. */
if (server.master->reploff == -1)
server.master->flags |= CLIENT_PRE_PSYNC;
if (dbid != -1) selectDb(server.master,dbid);
}
void restartAOF() {
int retry = 10;
while (retry-- && startAppendOnly() == C_ERR) {
serverLog(LL_WARNING,"Failed enabling the AOF after successful master synchronization! Trying it again in one second.");
sleep(1);
}
if (!retry) {
serverLog(LL_WARNING,"FATAL: this slave instance finished the synchronization with its master, but the AOF can't be turned on. Exiting now.");
exit(1);
}
}
/* Asynchronously read the SYNC payload we receive from a master */
#define REPL_MAX_WRITTEN_BEFORE_FSYNC (1024*1024*8) /* 8 MB */
void readSyncBulkPayload(aeEventLoop *el, int fd, void *privdata, int mask) {
char buf[4096];
ssize_t nread, readlen;
off_t left;
UNUSED(el);
UNUSED(privdata);
UNUSED(mask);
/* Static vars used to hold the EOF mark, and the last bytes received
* form the server: when they match, we reached the end of the transfer. */
static char eofmark[CONFIG_RUN_ID_SIZE];
static char lastbytes[CONFIG_RUN_ID_SIZE];
static int usemark = 0;
/* If repl_transfer_size == -1 we still have to read the bulk length
* from the master reply. */
if (server.repl_transfer_size == -1) {
if (syncReadLine(fd,buf,1024,server.repl_syncio_timeout*1000) == -1) {
serverLog(LL_WARNING,
"I/O error reading bulk count from MASTER: %s",
strerror(errno));
goto error;
}
if (buf[0] == '-') {
serverLog(LL_WARNING,
"MASTER aborted replication with an error: %s",
buf+1);
goto error;
} else if (buf[0] == '\0') {
/* At this stage just a newline works as a PING in order to take
* the connection live. So we refresh our last interaction
* timestamp. */
server.repl_transfer_lastio = server.unixtime;
return;
} else if (buf[0] != '$') {
serverLog(LL_WARNING,"Bad protocol from MASTER, the first byte is not '$' (we received '%s'), are you sure the host and port are right?", buf);
goto error;
}
/* There are two possible forms for the bulk payload. One is the
* usual $<count> bulk format. The other is used for diskless transfers
* when the master does not know beforehand the size of the file to
* transfer. In the latter case, the following format is used:
*
* $EOF:<40 bytes delimiter>
*
* At the end of the file the announced delimiter is transmitted. The
* delimiter is long and random enough that the probability of a
* collision with the actual file content can be ignored. */
if (strncmp(buf+1,"EOF:",4) == 0 && strlen(buf+5) >= CONFIG_RUN_ID_SIZE) {
usemark = 1;
memcpy(eofmark,buf+5,CONFIG_RUN_ID_SIZE);
memset(lastbytes,0,CONFIG_RUN_ID_SIZE);
/* Set any repl_transfer_size to avoid entering this code path
* at the next call. */
server.repl_transfer_size = 0;
serverLog(LL_NOTICE,
"MASTER <-> SLAVE sync: receiving streamed RDB from master");
} else {
usemark = 0;
server.repl_transfer_size = strtol(buf+1,NULL,10);
serverLog(LL_NOTICE,
"MASTER <-> SLAVE sync: receiving %lld bytes from master",
(long long) server.repl_transfer_size);
}
return;
}
/* Read bulk data */
if (usemark) {
readlen = sizeof(buf);
} else {
left = server.repl_transfer_size - server.repl_transfer_read;
readlen = (left < (signed)sizeof(buf)) ? left : (signed)sizeof(buf);
}
nread = read(fd,buf,readlen);
if (nread <= 0) {
serverLog(LL_WARNING,"I/O error trying to sync with MASTER: %s",
(nread == -1) ? strerror(errno) : "connection lost");
cancelReplicationHandshake();
return;
}
server.stat_net_input_bytes += nread;
/* When a mark is used, we want to detect EOF asap in order to avoid
* writing the EOF mark into the file... */
int eof_reached = 0;
if (usemark) {
/* Update the last bytes array, and check if it matches our delimiter.*/
if (nread >= CONFIG_RUN_ID_SIZE) {
memcpy(lastbytes,buf+nread-CONFIG_RUN_ID_SIZE,CONFIG_RUN_ID_SIZE);
} else {
int rem = CONFIG_RUN_ID_SIZE-nread;
memmove(lastbytes,lastbytes+nread,rem);
memcpy(lastbytes+rem,buf,nread);
}
if (memcmp(lastbytes,eofmark,CONFIG_RUN_ID_SIZE) == 0) eof_reached = 1;
}
server.repl_transfer_lastio = server.unixtime;
if (write(server.repl_transfer_fd,buf,nread) != nread) {
serverLog(LL_WARNING,"Write error or short write writing to the DB dump file needed for MASTER <-> SLAVE synchronization: %s", strerror(errno));
goto error;
}
server.repl_transfer_read += nread;
/* Delete the last 40 bytes from the file if we reached EOF. */
if (usemark && eof_reached) {
if (ftruncate(server.repl_transfer_fd,
server.repl_transfer_read - CONFIG_RUN_ID_SIZE) == -1)
{
serverLog(LL_WARNING,"Error truncating the RDB file received from the master for SYNC: %s", strerror(errno));
goto error;
}
}
/* Sync data on disk from time to time, otherwise at the end of the transfer
* we may suffer a big delay as the memory buffers are copied into the
* actual disk. */
if (server.repl_transfer_read >=
server.repl_transfer_last_fsync_off + REPL_MAX_WRITTEN_BEFORE_FSYNC)
{
off_t sync_size = server.repl_transfer_read -
server.repl_transfer_last_fsync_off;
rdb_fsync_range(server.repl_transfer_fd,
server.repl_transfer_last_fsync_off, sync_size);
server.repl_transfer_last_fsync_off += sync_size;
}
/* Check if the transfer is now complete */
if (!usemark) {
if (server.repl_transfer_read == server.repl_transfer_size)
eof_reached = 1;
}
if (eof_reached) {
int aof_is_enabled = server.aof_state != AOF_OFF;
if (rename(server.repl_transfer_tmpfile,server.rdb_filename) == -1) {
serverLog(LL_WARNING,"Failed trying to rename the temp DB into dump.rdb in MASTER <-> SLAVE synchronization: %s", strerror(errno));
cancelReplicationHandshake();
return;
}
serverLog(LL_NOTICE, "MASTER <-> SLAVE sync: Flushing old data");
/* We need to stop any AOFRW fork before flusing and parsing
* RDB, otherwise we'll create a copy-on-write disaster. */
if(aof_is_enabled) stopAppendOnly();
signalFlushedDb(-1);
emptyDb(
-1,
server.repl_slave_lazy_flush ? EMPTYDB_ASYNC : EMPTYDB_NO_FLAGS,
replicationEmptyDbCallback);
/* Before loading the DB into memory we need to delete the readable
* handler, otherwise it will get called recursively since
* rdbLoad() will call the event loop to process events from time to
* time for non blocking loading. */
aeDeleteFileEvent(server.el,server.repl_transfer_s,AE_READABLE);
serverLog(LL_NOTICE, "MASTER <-> SLAVE sync: Loading DB in memory");
rdbSaveInfo rsi = RDB_SAVE_INFO_INIT;
if (rdbLoad(server.rdb_filename,&rsi) != C_OK) {
serverLog(LL_WARNING,"Failed trying to load the MASTER synchronization DB from disk");
cancelReplicationHandshake();
/* Re-enable the AOF if we disabled it earlier, in order to restore
* the original configuration. */
if (aof_is_enabled) restartAOF();
return;
}
/* Final setup of the connected slave <- master link */
zfree(server.repl_transfer_tmpfile);
close(server.repl_transfer_fd);
replicationCreateMasterClient(server.repl_transfer_s,rsi.repl_stream_db);
server.repl_state = REPL_STATE_CONNECTED;
/* After a full resynchroniziation we use the replication ID and
* offset of the master. The secondary ID / offset are cleared since
* we are starting a new history. */
memcpy(server.replid,server.master->replid,sizeof(server.replid));
server.master_repl_offset = server.master->reploff;
clearReplicationId2();
/* Let's create the replication backlog if needed. Slaves need to
* accumulate the backlog regardless of the fact they have sub-slaves
* or not, in order to behave correctly if they are promoted to
* masters after a failover. */
if (server.repl_backlog == NULL) createReplicationBacklog();
serverLog(LL_NOTICE, "MASTER <-> SLAVE sync: Finished with success");
/* Restart the AOF subsystem now that we finished the sync. This
* will trigger an AOF rewrite, and when done will start appending
* to the new file. */
if (aof_is_enabled) restartAOF();
}
return;
error:
cancelReplicationHandshake();
return;
}
/* Send a synchronous command to the master. Used to send AUTH and
* REPLCONF commands before starting the replication with SYNC.
*
* The command returns an sds string representing the result of the
* operation. On error the first byte is a "-".
*/
#define SYNC_CMD_READ (1<<0)
#define SYNC_CMD_WRITE (1<<1)
#define SYNC_CMD_FULL (SYNC_CMD_READ|SYNC_CMD_WRITE)
char *sendSynchronousCommand(int flags, int fd, ...) {
/* Create the command to send to the master, we use simple inline
* protocol for simplicity as currently we only send simple strings. */
if (flags & SYNC_CMD_WRITE) {
char *arg;
va_list ap;
sds cmd = sdsempty();
va_start(ap,fd);
while(1) {
arg = va_arg(ap, char*);
if (arg == NULL) break;
if (sdslen(cmd) != 0) cmd = sdscatlen(cmd," ",1);
cmd = sdscat(cmd,arg);
}
cmd = sdscatlen(cmd,"\r\n",2);
va_end(ap);
/* Transfer command to the server. */
if (syncWrite(fd,cmd,sdslen(cmd),server.repl_syncio_timeout*1000)
== -1)
{
sdsfree(cmd);
return sdscatprintf(sdsempty(),"-Writing to master: %s",
strerror(errno));
}
sdsfree(cmd);
}
/* Read the reply from the server. */
if (flags & SYNC_CMD_READ) {
char buf[256];
if (syncReadLine(fd,buf,sizeof(buf),server.repl_syncio_timeout*1000)
== -1)
{
return sdscatprintf(sdsempty(),"-Reading from master: %s",
strerror(errno));
}
server.repl_transfer_lastio = server.unixtime;
return sdsnew(buf);
}
return NULL;
}
/* Try a partial resynchronization with the master if we are about to reconnect.
* If there is no cached master structure, at least try to issue a
* "PSYNC ? -1" command in order to trigger a full resync using the PSYNC
* command in order to obtain the master run id and the master replication
* global offset.
*
* This function is designed to be called from syncWithMaster(), so the
* following assumptions are made:
*
* 1) We pass the function an already connected socket "fd".
* 2) This function does not close the file descriptor "fd". However in case
* of successful partial resynchronization, the function will reuse
* 'fd' as file descriptor of the server.master client structure.
*
* The function is split in two halves: if read_reply is 0, the function
* writes the PSYNC command on the socket, and a new function call is
* needed, with read_reply set to 1, in order to read the reply of the
* command. This is useful in order to support non blocking operations, so
* that we write, return into the event loop, and read when there are data.
*
* When read_reply is 0 the function returns PSYNC_WRITE_ERR if there
* was a write error, or PSYNC_WAIT_REPLY to signal we need another call
* with read_reply set to 1. However even when read_reply is set to 1
* the function may return PSYNC_WAIT_REPLY again to signal there were
* insufficient data to read to complete its work. We should re-enter
* into the event loop and wait in such a case.
*
* The function returns:
*
* PSYNC_CONTINUE: If the PSYNC command succeded and we can continue.
* PSYNC_FULLRESYNC: If PSYNC is supported but a full resync is needed.
* In this case the master run_id and global replication
* offset is saved.
* PSYNC_NOT_SUPPORTED: If the server does not understand PSYNC at all and
* the caller should fall back to SYNC.
* PSYNC_WRITE_ERROR: There was an error writing the command to the socket.
* PSYNC_WAIT_REPLY: Call again the function with read_reply set to 1.
* PSYNC_TRY_LATER: Master is currently in a transient error condition.
*
* Notable side effects:
*
* 1) As a side effect of the function call the function removes the readable
* event handler from "fd", unless the return value is PSYNC_WAIT_REPLY.
* 2) server.master_initial_offset is set to the right value according
* to the master reply. This will be used to populate the 'server.master'
* structure replication offset.
*/
#define PSYNC_WRITE_ERROR 0
#define PSYNC_WAIT_REPLY 1
#define PSYNC_CONTINUE 2
#define PSYNC_FULLRESYNC 3
#define PSYNC_NOT_SUPPORTED 4
#define PSYNC_TRY_LATER 5
int slaveTryPartialResynchronization(int fd, int read_reply) {
char *psync_replid;
char psync_offset[32];
sds reply;
/* Writing half */
if (!read_reply) {
/* Initially set master_initial_offset to -1 to mark the current
* master run_id and offset as not valid. Later if we'll be able to do
* a FULL resync using the PSYNC command we'll set the offset at the
* right value, so that this information will be propagated to the
* client structure representing the master into server.master. */
server.master_initial_offset = -1;
if (server.cached_master) {
psync_replid = server.cached_master->replid;
snprintf(psync_offset,sizeof(psync_offset),"%lld", server.cached_master->reploff+1);
serverLog(LL_NOTICE,"Trying a partial resynchronization (request %s:%s).", psync_replid, psync_offset);
} else {
serverLog(LL_NOTICE,"Partial resynchronization not possible (no cached master)");
psync_replid = "?";
memcpy(psync_offset,"-1",3);
}
/* Issue the PSYNC command */
reply = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"PSYNC",psync_replid,psync_offset,NULL);
if (reply != NULL) {
serverLog(LL_WARNING,"Unable to send PSYNC to master: %s",reply);
sdsfree(reply);
aeDeleteFileEvent(server.el,fd,AE_READABLE);
return PSYNC_WRITE_ERROR;
}
return PSYNC_WAIT_REPLY;
}
/* Reading half */
reply = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
if (sdslen(reply) == 0) {
/* The master may send empty newlines after it receives PSYNC
* and before to reply, just to keep the connection alive. */
sdsfree(reply);
return PSYNC_WAIT_REPLY;
}
aeDeleteFileEvent(server.el,fd,AE_READABLE);
if (!strncmp(reply,"+FULLRESYNC",11)) {
char *replid = NULL, *offset = NULL;
/* FULL RESYNC, parse the reply in order to extract the run id
* and the replication offset. */
replid = strchr(reply,' ');
if (replid) {
replid++;
offset = strchr(replid,' ');
if (offset) offset++;
}
if (!replid || !offset || (offset-replid-1) != CONFIG_RUN_ID_SIZE) {
serverLog(LL_WARNING,
"Master replied with wrong +FULLRESYNC syntax.");
/* This is an unexpected condition, actually the +FULLRESYNC
* reply means that the master supports PSYNC, but the reply
* format seems wrong. To stay safe we blank the master
* replid to make sure next PSYNCs will fail. */
memset(server.master_replid,0,CONFIG_RUN_ID_SIZE+1);
} else {
memcpy(server.master_replid, replid, offset-replid-1);
server.master_replid[CONFIG_RUN_ID_SIZE] = '\0';
server.master_initial_offset = strtoll(offset,NULL,10);
serverLog(LL_NOTICE,"Full resync from master: %s:%lld",
server.master_replid,
server.master_initial_offset);
}
/* We are going to full resync, discard the cached master structure. */
replicationDiscardCachedMaster();
sdsfree(reply);
return PSYNC_FULLRESYNC;
}
if (!strncmp(reply,"+CONTINUE",9)) {
/* Partial resync was accepted. */
serverLog(LL_NOTICE,
"Successful partial resynchronization with master.");
/* Check the new replication ID advertised by the master. If it
* changed, we need to set the new ID as primary ID, and set or
* secondary ID as the old master ID up to the current offset, so
* that our sub-slaves will be able to PSYNC with us after a
* disconnection. */
char *start = reply+10;
char *end = reply+9;
while(end[0] != '\r' && end[0] != '\n' && end[0] != '\0') end++;
if (end-start == CONFIG_RUN_ID_SIZE) {
char new[CONFIG_RUN_ID_SIZE+1];
memcpy(new,start,CONFIG_RUN_ID_SIZE);
new[CONFIG_RUN_ID_SIZE] = '\0';
if (strcmp(new,server.cached_master->replid)) {
/* Master ID changed. */
serverLog(LL_WARNING,"Master replication ID changed to %s",new);
/* Set the old ID as our ID2, up to the current offset+1. */
memcpy(server.replid2,server.cached_master->replid,
sizeof(server.replid2));
server.second_replid_offset = server.master_repl_offset+1;
/* Update the cached master ID and our own primary ID to the
* new one. */
memcpy(server.replid,new,sizeof(server.replid));
memcpy(server.cached_master->replid,new,sizeof(server.replid));
/* Disconnect all the sub-slaves: they need to be notified. */
disconnectSlaves();
}
}
/* Setup the replication to continue. */
sdsfree(reply);
replicationResurrectCachedMaster(fd);
/* If this instance was restarted and we read the metadata to
* PSYNC from the persistence file, our replication backlog could
* be still not initialized. Create it. */
if (server.repl_backlog == NULL) createReplicationBacklog();
return PSYNC_CONTINUE;
}
/* If we reach this point we received either an error (since the master does
* not understand PSYNC or because it is in a special state and cannot
* serve our request), or an unexpected reply from the master.
*
* Return PSYNC_NOT_SUPPORTED on errors we don't understand, otherwise
* return PSYNC_TRY_LATER if we believe this is a transient error. */
if (!strncmp(reply,"-NOMASTERLINK",13) ||
!strncmp(reply,"-LOADING",8))
{
serverLog(LL_NOTICE,
"Master is currently unable to PSYNC "
"but should be in the future: %s", reply);
sdsfree(reply);
return PSYNC_TRY_LATER;
}
if (strncmp(reply,"-ERR",4)) {
/* If it's not an error, log the unexpected event. */
serverLog(LL_WARNING,
"Unexpected reply to PSYNC from master: %s", reply);
} else {
serverLog(LL_NOTICE,
"Master does not support PSYNC or is in "
"error state (reply: %s)", reply);
}
sdsfree(reply);
replicationDiscardCachedMaster();
return PSYNC_NOT_SUPPORTED;
}
/* This handler fires when the non blocking connect was able to
* establish a connection with the master. */
void syncWithMaster(aeEventLoop *el, int fd, void *privdata, int mask) {
char tmpfile[256], *err = NULL;
int dfd = -1, maxtries = 5;
int sockerr = 0, psync_result;
socklen_t errlen = sizeof(sockerr);
UNUSED(el);
UNUSED(privdata);
UNUSED(mask);
/* If this event fired after the user turned the instance into a master
* with SLAVEOF NO ONE we must just return ASAP. */
if (server.repl_state == REPL_STATE_NONE) {
close(fd);
return;
}
/* Check for errors in the socket: after a non blocking connect() we
* may find that the socket is in error state. */
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &sockerr, &errlen) == -1)
sockerr = errno;
if (sockerr) {
serverLog(LL_WARNING,"Error condition on socket for SYNC: %s",
strerror(sockerr));
goto error;
}
/* Send a PING to check the master is able to reply without errors. */
if (server.repl_state == REPL_STATE_CONNECTING) {
serverLog(LL_NOTICE,"Non blocking connect for SYNC fired the event.");
/* Delete the writable event so that the readable event remains
* registered and we can wait for the PONG reply. */
aeDeleteFileEvent(server.el,fd,AE_WRITABLE);
server.repl_state = REPL_STATE_RECEIVE_PONG;
/* Send the PING, don't check for errors at all, we have the timeout
* that will take care about this. */
err = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"PING",NULL);
if (err) goto write_error;
return;
}
/* Receive the PONG command. */
if (server.repl_state == REPL_STATE_RECEIVE_PONG) {
err = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
/* We accept only two replies as valid, a positive +PONG reply
* (we just check for "+") or an authentication error.
* Note that older versions of Redis replied with "operation not
* permitted" instead of using a proper error code, so we test
* both. */
if (err[0] != '+' &&
strncmp(err,"-NOAUTH",7) != 0 &&
strncmp(err,"-ERR operation not permitted",28) != 0)
{
serverLog(LL_WARNING,"Error reply to PING from master: '%s'",err);
sdsfree(err);
goto error;
} else {
serverLog(LL_NOTICE,
"Master replied to PING, replication can continue...");
}
sdsfree(err);
server.repl_state = REPL_STATE_SEND_AUTH;
}
/* AUTH with the master if required. */
if (server.repl_state == REPL_STATE_SEND_AUTH) {
if (server.masterauth) {
err = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"AUTH",server.masterauth,NULL);
if (err) goto write_error;
server.repl_state = REPL_STATE_RECEIVE_AUTH;
return;
} else {
server.repl_state = REPL_STATE_SEND_PORT;
}
}
/* Receive AUTH reply. */
if (server.repl_state == REPL_STATE_RECEIVE_AUTH) {
err = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
if (err[0] == '-') {
serverLog(LL_WARNING,"Unable to AUTH to MASTER: %s",err);
sdsfree(err);
goto error;
}
sdsfree(err);
server.repl_state = REPL_STATE_SEND_PORT;
}
/* Set the slave port, so that Master's INFO command can list the
* slave listening port correctly. */
if (server.repl_state == REPL_STATE_SEND_PORT) {
sds port = sdsfromlonglong(server.slave_announce_port ?
server.slave_announce_port : server.port);
err = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"REPLCONF",
"listening-port",port, NULL);
sdsfree(port);
if (err) goto write_error;
sdsfree(err);
server.repl_state = REPL_STATE_RECEIVE_PORT;
return;
}
/* Receive REPLCONF listening-port reply. */
if (server.repl_state == REPL_STATE_RECEIVE_PORT) {
err = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
/* Ignore the error if any, not all the Redis versions support
* REPLCONF listening-port. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF listening-port: %s", err);
}
sdsfree(err);
server.repl_state = REPL_STATE_SEND_IP;
}
/* Skip REPLCONF ip-address if there is no slave-announce-ip option set. */
if (server.repl_state == REPL_STATE_SEND_IP &&
server.slave_announce_ip == NULL)
{
server.repl_state = REPL_STATE_SEND_CAPA;
}
/* Set the slave ip, so that Master's INFO command can list the
* slave IP address port correctly in case of port forwarding or NAT. */
if (server.repl_state == REPL_STATE_SEND_IP) {
err = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"REPLCONF",
"ip-address",server.slave_announce_ip, NULL);
if (err) goto write_error;
sdsfree(err);
server.repl_state = REPL_STATE_RECEIVE_IP;
return;
}
/* Receive REPLCONF ip-address reply. */
if (server.repl_state == REPL_STATE_RECEIVE_IP) {
err = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
/* Ignore the error if any, not all the Redis versions support
* REPLCONF listening-port. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF ip-address: %s", err);
}
sdsfree(err);
server.repl_state = REPL_STATE_SEND_CAPA;
}
/* Inform the master of our (slave) capabilities.
*
* EOF: supports EOF-style RDB transfer for diskless replication.
* PSYNC2: supports PSYNC v2, so understands +CONTINUE <new repl ID>.
*
* The master will ignore capabilities it does not understand. */
if (server.repl_state == REPL_STATE_SEND_CAPA) {
err = sendSynchronousCommand(SYNC_CMD_WRITE,fd,"REPLCONF",
"capa","eof","capa","psync2",NULL);
if (err) goto write_error;
sdsfree(err);
server.repl_state = REPL_STATE_RECEIVE_CAPA;
return;
}
/* Receive CAPA reply. */
if (server.repl_state == REPL_STATE_RECEIVE_CAPA) {
err = sendSynchronousCommand(SYNC_CMD_READ,fd,NULL);
/* Ignore the error if any, not all the Redis versions support
* REPLCONF capa. */
if (err[0] == '-') {
serverLog(LL_NOTICE,"(Non critical) Master does not understand "
"REPLCONF capa: %s", err);
}
sdsfree(err);
server.repl_state = REPL_STATE_SEND_PSYNC;
}
/* Try a partial resynchonization. If we don't have a cached master
* slaveTryPartialResynchronization() will at least try to use PSYNC
* to start a full resynchronization so that we get the master run id
* and the global offset, to try a partial resync at the next
* reconnection attempt. */
if (server.repl_state == REPL_STATE_SEND_PSYNC) {
if (slaveTryPartialResynchronization(fd,0) == PSYNC_WRITE_ERROR) {
err = sdsnew("Write error sending the PSYNC command.");
goto write_error;
}
server.repl_state = REPL_STATE_RECEIVE_PSYNC;
return;
}
/* If reached this point, we should be in REPL_STATE_RECEIVE_PSYNC. */
if (server.repl_state != REPL_STATE_RECEIVE_PSYNC) {
serverLog(LL_WARNING,"syncWithMaster(): state machine error, "
"state should be RECEIVE_PSYNC but is %d",
server.repl_state);
goto error;
}
psync_result = slaveTryPartialResynchronization(fd,1);
if (psync_result == PSYNC_WAIT_REPLY) return; /* Try again later... */
/* If the master is in an transient error, we should try to PSYNC
* from scratch later, so go to the error path. This happens when
* the server is loading the dataset or is not connected with its
* master and so forth. */
if (psync_result == PSYNC_TRY_LATER) goto error;
/* Note: if PSYNC does not return WAIT_REPLY, it will take care of
* uninstalling the read handler from the file descriptor. */
if (psync_result == PSYNC_CONTINUE) {
serverLog(LL_NOTICE, "MASTER <-> SLAVE sync: Master accepted a Partial Resynchronization.");
return;
}
/* PSYNC failed or is not supported: we want our slaves to resync with us
* as well, if we have any sub-slaves. The master may transfer us an
* entirely different data set and we have no way to incrementally feed
* our slaves after that. */
disconnectSlaves(); /* Force our slaves to resync with us as well. */
freeReplicationBacklog(); /* Don't allow our chained slaves to PSYNC. */
/* Fall back to SYNC if needed. Otherwise psync_result == PSYNC_FULLRESYNC
* and the server.master_replid and master_initial_offset are
* already populated. */
if (psync_result == PSYNC_NOT_SUPPORTED) {
serverLog(LL_NOTICE,"Retrying with SYNC...");
if (syncWrite(fd,"SYNC\r\n",6,server.repl_syncio_timeout*1000) == -1) {
serverLog(LL_WARNING,"I/O error writing to MASTER: %s",
strerror(errno));
goto error;
}
}
/* Prepare a suitable temp file for bulk transfer */
while(maxtries--) {
snprintf(tmpfile,256,
"temp-%d.%ld.rdb",(int)server.unixtime,(long int)getpid());
dfd = open(tmpfile,O_CREAT|O_WRONLY|O_EXCL,0644);
if (dfd != -1) break;
sleep(1);
}
if (dfd == -1) {
serverLog(LL_WARNING,"Opening the temp file needed for MASTER <-> SLAVE synchronization: %s",strerror(errno));
goto error;
}
/* Setup the non blocking download of the bulk file. */
if (aeCreateFileEvent(server.el,fd, AE_READABLE,readSyncBulkPayload,NULL)
== AE_ERR)
{
serverLog(LL_WARNING,
"Can't create readable event for SYNC: %s (fd=%d)",
strerror(errno),fd);
goto error;
}
server.repl_state = REPL_STATE_TRANSFER;
server.repl_transfer_size = -1;
server.repl_transfer_read = 0;
server.repl_transfer_last_fsync_off = 0;
server.repl_transfer_fd = dfd;
server.repl_transfer_lastio = server.unixtime;
server.repl_transfer_tmpfile = zstrdup(tmpfile);
return;
error:
aeDeleteFileEvent(server.el,fd,AE_READABLE|AE_WRITABLE);
if (dfd != -1) close(dfd);
close(fd);
server.repl_transfer_s = -1;
server.repl_state = REPL_STATE_CONNECT;
return;
write_error: /* Handle sendSynchronousCommand(SYNC_CMD_WRITE) errors. */
serverLog(LL_WARNING,"Sending command to master in replication handshake: %s", err);
sdsfree(err);
goto error;
}
int connectWithMaster(void) {
int fd;
fd = anetTcpNonBlockBestEffortBindConnect(NULL,
server.masterhost,server.masterport,NET_FIRST_BIND_ADDR);
if (fd == -1) {
serverLog(LL_WARNING,"Unable to connect to MASTER: %s",
strerror(errno));
return C_ERR;
}
if (aeCreateFileEvent(server.el,fd,AE_READABLE|AE_WRITABLE,syncWithMaster,NULL) ==
AE_ERR)
{
close(fd);
serverLog(LL_WARNING,"Can't create readable event for SYNC");
return C_ERR;
}
server.repl_transfer_lastio = server.unixtime;
server.repl_transfer_s = fd;
server.repl_state = REPL_STATE_CONNECTING;
return C_OK;
}
/* This function can be called when a non blocking connection is currently
* in progress to undo it.
* Never call this function directly, use cancelReplicationHandshake() instead.
*/
void undoConnectWithMaster(void) {
int fd = server.repl_transfer_s;
aeDeleteFileEvent(server.el,fd,AE_READABLE|AE_WRITABLE);
close(fd);
server.repl_transfer_s = -1;
}
/* Abort the async download of the bulk dataset while SYNC-ing with master.
* Never call this function directly, use cancelReplicationHandshake() instead.
*/
void replicationAbortSyncTransfer(void) {
serverAssert(server.repl_state == REPL_STATE_TRANSFER);
undoConnectWithMaster();
close(server.repl_transfer_fd);
unlink(server.repl_transfer_tmpfile);
zfree(server.repl_transfer_tmpfile);
}
/* This function aborts a non blocking replication attempt if there is one
* in progress, by canceling the non-blocking connect attempt or
* the initial bulk transfer.
*
* If there was a replication handshake in progress 1 is returned and
* the replication state (server.repl_state) set to REPL_STATE_CONNECT.
*
* Otherwise zero is returned and no operation is perforemd at all. */
int cancelReplicationHandshake(void) {
if (server.repl_state == REPL_STATE_TRANSFER) {
replicationAbortSyncTransfer();
server.repl_state = REPL_STATE_CONNECT;
} else if (server.repl_state == REPL_STATE_CONNECTING ||
slaveIsInHandshakeState())
{
undoConnectWithMaster();
server.repl_state = REPL_STATE_CONNECT;
} else {
return 0;
}
return 1;
}
/* Set replication to the specified master address and port. */
void replicationSetMaster(char *ip, int port) {
int was_master = server.masterhost == NULL;
sdsfree(server.masterhost);
server.masterhost = sdsnew(ip);
server.masterport = port;
if (server.master) {
freeClient(server.master);
}
disconnectAllBlockedClients(); /* Clients blocked in master, now slave. */
/* Force our slaves to resync with us as well. They may hopefully be able
* to partially resync with us, but we can notify the replid change. */
disconnectSlaves();
cancelReplicationHandshake();
/* Before destroying our master state, create a cached master using
* our own parameters, to later PSYNC with the new master. */
if (was_master) replicationCacheMasterUsingMyself();
server.repl_state = REPL_STATE_CONNECT;
server.repl_down_since = 0;
}
/* Cancel replication, setting the instance as a master itself. */
void replicationUnsetMaster(void) {
if (server.masterhost == NULL) return; /* Nothing to do. */
sdsfree(server.masterhost);
server.masterhost = NULL;
/* When a slave is turned into a master, the current replication ID
* (that was inherited from the master at synchronization time) is
* used as secondary ID up to the current offset, and a new replication
* ID is created to continue with a new replication history. */
shiftReplicationId();
if (server.master) freeClient(server.master);
replicationDiscardCachedMaster();
cancelReplicationHandshake();
/* Disconnecting all the slaves is required: we need to inform slaves
* of the replication ID change (see shiftReplicationId() call). However
* the slaves will be able to partially resync with us, so it will be
* a very fast reconnection. */
disconnectSlaves();
server.repl_state = REPL_STATE_NONE;
/* We need to make sure the new master will start the replication stream
* with a SELECT statement. This is forced after a full resync, but
* with PSYNC version 2, there is no need for full resync after a
* master switch. */
server.slaveseldb = -1;
/* Once we turn from slave to master, we consider the starting time without
* slaves (that is used to count the replication backlog time to live) as
* starting from now. Otherwise the backlog will be freed after a
* failover if slaves do not connect immediately. */
server.repl_no_slaves_since = server.unixtime;
}
/* This function is called when the slave lose the connection with the
* master into an unexpected way. */
void replicationHandleMasterDisconnection(void) {
server.master = NULL;
server.repl_state = REPL_STATE_CONNECT;
server.repl_down_since = server.unixtime;
/* We lost connection with our master, don't disconnect slaves yet,
* maybe we'll be able to PSYNC with our master later. We'll disconnect
* the slaves only if we'll have to do a full resync with our master. */
}
void slaveofCommand(client *c) {
/* SLAVEOF is not allowed in cluster mode as replication is automatically
* configured using the current address of the master node. */
if (server.cluster_enabled) {
addReplyError(c,"SLAVEOF not allowed in cluster mode.");
return;
}
/* The special host/port combination "NO" "ONE" turns the instance
* into a master. Otherwise the new master address is set. */
if (!strcasecmp(c->argv[1]->ptr,"no") &&
!strcasecmp(c->argv[2]->ptr,"one")) {
if (server.masterhost) {
replicationUnsetMaster();
sds client = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE,"MASTER MODE enabled (user request from '%s')",
client);
sdsfree(client);
}
} else {
long port;
if ((getLongFromObjectOrReply(c, c->argv[2], &port, NULL) != C_OK))
return;
/* Check if we are already attached to the specified slave */
if (server.masterhost && !strcasecmp(server.masterhost,c->argv[1]->ptr)
&& server.masterport == port) {
serverLog(LL_NOTICE,"SLAVE OF would result into synchronization with the master we are already connected with. No operation performed.");
addReplySds(c,sdsnew("+OK Already connected to specified master\r\n"));
return;
}
/* There was no previous master or the user specified a different one,
* we can continue. */
replicationSetMaster(c->argv[1]->ptr, port);
sds client = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE,"SLAVE OF %s:%d enabled (user request from '%s')",
server.masterhost, server.masterport, client);
sdsfree(client);
}
addReply(c,shared.ok);
}
/* ROLE command: provide information about the role of the instance
* (master or slave) and additional information related to replication
* in an easy to process format. */
void roleCommand(client *c) {
if (server.masterhost == NULL) {
listIter li;
listNode *ln;
void *mbcount;
int slaves = 0;
addReplyMultiBulkLen(c,3);
addReplyBulkCBuffer(c,"master",6);
addReplyLongLong(c,server.master_repl_offset);
mbcount = addDeferredMultiBulkLength(c);
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
char ip[NET_IP_STR_LEN], *slaveip = slave->slave_ip;
if (slaveip[0] == '\0') {
if (anetPeerToString(slave->fd,ip,sizeof(ip),NULL) == -1)
continue;
slaveip = ip;
}
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
addReplyMultiBulkLen(c,3);
addReplyBulkCString(c,slaveip);
addReplyBulkLongLong(c,slave->slave_listening_port);
addReplyBulkLongLong(c,slave->repl_ack_off);
slaves++;
}
setDeferredMultiBulkLength(c,mbcount,slaves);
} else {
char *slavestate = NULL;
addReplyMultiBulkLen(c,5);
addReplyBulkCBuffer(c,"slave",5);
addReplyBulkCString(c,server.masterhost);
addReplyLongLong(c,server.masterport);
if (slaveIsInHandshakeState()) {
slavestate = "handshake";
} else {
switch(server.repl_state) {
case REPL_STATE_NONE: slavestate = "none"; break;
case REPL_STATE_CONNECT: slavestate = "connect"; break;
case REPL_STATE_CONNECTING: slavestate = "connecting"; break;
case REPL_STATE_TRANSFER: slavestate = "sync"; break;
case REPL_STATE_CONNECTED: slavestate = "connected"; break;
default: slavestate = "unknown"; break;
}
}
addReplyBulkCString(c,slavestate);
addReplyLongLong(c,server.master ? server.master->reploff : -1);
}
}
/* Send a REPLCONF ACK command to the master to inform it about the current
* processed offset. If we are not connected with a master, the command has
* no effects. */
void replicationSendAck(void) {
client *c = server.master;
if (c != NULL) {
c->flags |= CLIENT_MASTER_FORCE_REPLY;
addReplyMultiBulkLen(c,3);
addReplyBulkCString(c,"REPLCONF");
addReplyBulkCString(c,"ACK");
addReplyBulkLongLong(c,c->reploff);
c->flags &= ~CLIENT_MASTER_FORCE_REPLY;
}
}
/* ---------------------- MASTER CACHING FOR PSYNC -------------------------- */
/* In order to implement partial synchronization we need to be able to cache
* our master's client structure after a transient disconnection.
* It is cached into server.cached_master and flushed away using the following
* functions. */
/* This function is called by freeClient() in order to cache the master
* client structure instead of destryoing it. freeClient() will return
* ASAP after this function returns, so every action needed to avoid problems
* with a client that is really "suspended" has to be done by this function.
*
* The other functions that will deal with the cached master are:
*
* replicationDiscardCachedMaster() that will make sure to kill the client
* as for some reason we don't want to use it in the future.
*
* replicationResurrectCachedMaster() that is used after a successful PSYNC
* handshake in order to reactivate the cached master.
*/
void replicationCacheMaster(client *c) {
serverAssert(server.master != NULL && server.cached_master == NULL);
serverLog(LL_NOTICE,"Caching the disconnected master state.");
/* Unlink the client from the server structures. */
unlinkClient(c);
/* Reset the master client so that's ready to accept new commands:
* we want to discard te non processed query buffers and non processed
* offsets, including pending transactions, already populated arguments,
* pending outputs to the master. */
sdsclear(server.master->querybuf);
sdsclear(server.master->pending_querybuf);
server.master->read_reploff = server.master->reploff;
if (c->flags & CLIENT_MULTI) discardTransaction(c);
listEmpty(c->reply);
c->bufpos = 0;
resetClient(c);
/* Save the master. Server.master will be set to null later by
* replicationHandleMasterDisconnection(). */
server.cached_master = server.master;
/* Invalidate the Peer ID cache. */
if (c->peerid) {
sdsfree(c->peerid);
c->peerid = NULL;
}
/* Caching the master happens instead of the actual freeClient() call,
* so make sure to adjust the replication state. This function will
* also set server.master to NULL. */
replicationHandleMasterDisconnection();
}
/* This function is called when a master is turend into a slave, in order to
* create from scratch a cached master for the new client, that will allow
* to PSYNC with the slave that was promoted as the new master after a
* failover.
*
* Assuming this instance was previously the master instance of the new master,
* the new master will accept its replication ID, and potentiall also the
* current offset if no data was lost during the failover. So we use our
* current replication ID and offset in order to synthesize a cached master. */
void replicationCacheMasterUsingMyself(void) {
/* The master client we create can be set to any DBID, because
* the new master will start its replication stream with SELECT. */
server.master_initial_offset = server.master_repl_offset;
replicationCreateMasterClient(-1,-1);
/* Use our own ID / offset. */
memcpy(server.master->replid, server.replid, sizeof(server.replid));
/* Set as cached master. */
unlinkClient(server.master);
server.cached_master = server.master;
server.master = NULL;
serverLog(LL_NOTICE,"Before turning into a slave, using my master parameters to synthesize a cached master: I may be able to synchronize with the new master with just a partial transfer.");
}
/* Free a cached master, called when there are no longer the conditions for
* a partial resync on reconnection. */
void replicationDiscardCachedMaster(void) {
if (server.cached_master == NULL) return;
serverLog(LL_NOTICE,"Discarding previously cached master state.");
server.cached_master->flags &= ~CLIENT_MASTER;
freeClient(server.cached_master);
server.cached_master = NULL;
}
/* Turn the cached master into the current master, using the file descriptor
* passed as argument as the socket for the new master.
*
* This function is called when successfully setup a partial resynchronization
* so the stream of data that we'll receive will start from were this
* master left. */
void replicationResurrectCachedMaster(int newfd) {
server.master = server.cached_master;
server.cached_master = NULL;
server.master->fd = newfd;
server.master->flags &= ~(CLIENT_CLOSE_AFTER_REPLY|CLIENT_CLOSE_ASAP);
server.master->authenticated = 1;
server.master->lastinteraction = server.unixtime;
server.repl_state = REPL_STATE_CONNECTED;
/* Re-add to the list of clients. */
linkClient(server.master);
if (aeCreateFileEvent(server.el, newfd, AE_READABLE,
readQueryFromClient, server.master)) {
serverLog(LL_WARNING,"Error resurrecting the cached master, impossible to add the readable handler: %s", strerror(errno));
freeClientAsync(server.master); /* Close ASAP. */
}
/* We may also need to install the write handler as well if there is
* pending data in the write buffers. */
if (clientHasPendingReplies(server.master)) {
if (aeCreateFileEvent(server.el, newfd, AE_WRITABLE,
sendReplyToClient, server.master)) {
serverLog(LL_WARNING,"Error resurrecting the cached master, impossible to add the writable handler: %s", strerror(errno));
freeClientAsync(server.master); /* Close ASAP. */
}
}
}
/* ------------------------- MIN-SLAVES-TO-WRITE --------------------------- */
/* This function counts the number of slaves with lag <= min-slaves-max-lag.
* If the option is active, the server will prevent writes if there are not
* enough connected slaves with the specified lag (or less). */
void refreshGoodSlavesCount(void) {
listIter li;
listNode *ln;
int good = 0;
if (!server.repl_min_slaves_to_write ||
!server.repl_min_slaves_max_lag) return;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
time_t lag = server.unixtime - slave->repl_ack_time;
if (slave->replstate == SLAVE_STATE_ONLINE &&
lag <= server.repl_min_slaves_max_lag) good++;
}
server.repl_good_slaves_count = good;
}
/* ----------------------- REPLICATION SCRIPT CACHE --------------------------
* The goal of this code is to keep track of scripts already sent to every
* connected slave, in order to be able to replicate EVALSHA as it is without
* translating it to EVAL every time it is possible.
*
* We use a capped collection implemented by a hash table for fast lookup
* of scripts we can send as EVALSHA, plus a linked list that is used for
* eviction of the oldest entry when the max number of items is reached.
*
* We don't care about taking a different cache for every different slave
* since to fill the cache again is not very costly, the goal of this code
* is to avoid that the same big script is trasmitted a big number of times
* per second wasting bandwidth and processor speed, but it is not a problem
* if we need to rebuild the cache from scratch from time to time, every used
* script will need to be transmitted a single time to reappear in the cache.
*
* This is how the system works:
*
* 1) Every time a new slave connects, we flush the whole script cache.
* 2) We only send as EVALSHA what was sent to the master as EVALSHA, without
* trying to convert EVAL into EVALSHA specifically for slaves.
* 3) Every time we trasmit a script as EVAL to the slaves, we also add the
* corresponding SHA1 of the script into the cache as we are sure every
* slave knows about the script starting from now.
* 4) On SCRIPT FLUSH command, we replicate the command to all the slaves
* and at the same time flush the script cache.
* 5) When the last slave disconnects, flush the cache.
* 6) We handle SCRIPT LOAD as well since that's how scripts are loaded
* in the master sometimes.
*/
/* Initialize the script cache, only called at startup. */
void replicationScriptCacheInit(void) {
server.repl_scriptcache_size = 10000;
server.repl_scriptcache_dict = dictCreate(&replScriptCacheDictType,NULL);
server.repl_scriptcache_fifo = listCreate();
}
/* Empty the script cache. Should be called every time we are no longer sure
* that every slave knows about all the scripts in our set, or when the
* current AOF "context" is no longer aware of the script. In general we
* should flush the cache:
*
* 1) Every time a new slave reconnects to this master and performs a
* full SYNC (PSYNC does not require flushing).
* 2) Every time an AOF rewrite is performed.
* 3) Every time we are left without slaves at all, and AOF is off, in order
* to reclaim otherwise unused memory.
*/
void replicationScriptCacheFlush(void) {
dictEmpty(server.repl_scriptcache_dict,NULL);
listRelease(server.repl_scriptcache_fifo);
server.repl_scriptcache_fifo = listCreate();
}
/* Add an entry into the script cache, if we reach max number of entries the
* oldest is removed from the list. */
void replicationScriptCacheAdd(sds sha1) {
int retval;
sds key = sdsdup(sha1);
/* Evict oldest. */
if (listLength(server.repl_scriptcache_fifo) == server.repl_scriptcache_size)
{
listNode *ln = listLast(server.repl_scriptcache_fifo);
sds oldest = listNodeValue(ln);
retval = dictDelete(server.repl_scriptcache_dict,oldest);
serverAssert(retval == DICT_OK);
listDelNode(server.repl_scriptcache_fifo,ln);
}
/* Add current. */
retval = dictAdd(server.repl_scriptcache_dict,key,NULL);
listAddNodeHead(server.repl_scriptcache_fifo,key);
serverAssert(retval == DICT_OK);
}
/* Returns non-zero if the specified entry exists inside the cache, that is,
* if all the slaves are aware of this script SHA1. */
int replicationScriptCacheExists(sds sha1) {
return dictFind(server.repl_scriptcache_dict,sha1) != NULL;
}
/* ----------------------- SYNCHRONOUS REPLICATION --------------------------
* Redis synchronous replication design can be summarized in points:
*
* - Redis masters have a global replication offset, used by PSYNC.
* - Master increment the offset every time new commands are sent to slaves.
* - Slaves ping back masters with the offset processed so far.
*
* So synchronous replication adds a new WAIT command in the form:
*
* WAIT <num_replicas> <milliseconds_timeout>
*
* That returns the number of replicas that processed the query when
* we finally have at least num_replicas, or when the timeout was
* reached.
*
* The command is implemented in this way:
*
* - Every time a client processes a command, we remember the replication
* offset after sending that command to the slaves.
* - When WAIT is called, we ask slaves to send an acknowledgement ASAP.
* The client is blocked at the same time (see blocked.c).
* - Once we receive enough ACKs for a given offset or when the timeout
* is reached, the WAIT command is unblocked and the reply sent to the
* client.
*/
/* This just set a flag so that we broadcast a REPLCONF GETACK command
* to all the slaves in the beforeSleep() function. Note that this way
* we "group" all the clients that want to wait for synchronouns replication
* in a given event loop iteration, and send a single GETACK for them all. */
void replicationRequestAckFromSlaves(void) {
server.get_ack_from_slaves = 1;
}
/* Return the number of slaves that already acknowledged the specified
* replication offset. */
int replicationCountAcksByOffset(long long offset) {
listIter li;
listNode *ln;
int count = 0;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
if (slave->repl_ack_off >= offset) count++;
}
return count;
}
/* WAIT for N replicas to acknowledge the processing of our latest
* write command (and all the previous commands). */
void waitCommand(client *c) {
mstime_t timeout;
long numreplicas, ackreplicas;
long long offset = c->woff;
if (server.masterhost) {
addReplyError(c,"WAIT cannot be used with slave instances. Please also note that since Redis 4.0 if a slave is configured to be writable (which is not the default) writes to slaves are just local and are not propagated.");
return;
}
/* Argument parsing. */
if (getLongFromObjectOrReply(c,c->argv[1],&numreplicas,NULL) != C_OK)
return;
if (getTimeoutFromObjectOrReply(c,c->argv[2],&timeout,UNIT_MILLISECONDS)
!= C_OK) return;
/* First try without blocking at all. */
ackreplicas = replicationCountAcksByOffset(c->woff);
if (ackreplicas >= numreplicas || c->flags & CLIENT_MULTI) {
addReplyLongLong(c,ackreplicas);
return;
}
/* Otherwise block the client and put it into our list of clients
* waiting for ack from slaves. */
c->bpop.timeout = timeout;
c->bpop.reploffset = offset;
c->bpop.numreplicas = numreplicas;
listAddNodeTail(server.clients_waiting_acks,c);
blockClient(c,BLOCKED_WAIT);
/* Make sure that the server will send an ACK request to all the slaves
* before returning to the event loop. */
replicationRequestAckFromSlaves();
}
/* This is called by unblockClient() to perform the blocking op type
* specific cleanup. We just remove the client from the list of clients
* waiting for replica acks. Never call it directly, call unblockClient()
* instead. */
void unblockClientWaitingReplicas(client *c) {
listNode *ln = listSearchKey(server.clients_waiting_acks,c);
serverAssert(ln != NULL);
listDelNode(server.clients_waiting_acks,ln);
}
/* Check if there are clients blocked in WAIT that can be unblocked since
* we received enough ACKs from slaves. */
void processClientsWaitingReplicas(void) {
long long last_offset = 0;
int last_numreplicas = 0;
listIter li;
listNode *ln;
listRewind(server.clients_waiting_acks,&li);
while((ln = listNext(&li))) {
client *c = ln->value;
/* Every time we find a client that is satisfied for a given
* offset and number of replicas, we remember it so the next client
* may be unblocked without calling replicationCountAcksByOffset()
* if the requested offset / replicas were equal or less. */
if (last_offset && last_offset > c->bpop.reploffset &&
last_numreplicas > c->bpop.numreplicas)
{
unblockClient(c);
addReplyLongLong(c,last_numreplicas);
} else {
int numreplicas = replicationCountAcksByOffset(c->bpop.reploffset);
if (numreplicas >= c->bpop.numreplicas) {
last_offset = c->bpop.reploffset;
last_numreplicas = numreplicas;
unblockClient(c);
addReplyLongLong(c,numreplicas);
}
}
}
}
/* Return the slave replication offset for this instance, that is
* the offset for which we already processed the master replication stream. */
long long replicationGetSlaveOffset(void) {
long long offset = 0;
if (server.masterhost != NULL) {
if (server.master) {
offset = server.master->reploff;
} else if (server.cached_master) {
offset = server.cached_master->reploff;
}
}
/* offset may be -1 when the master does not support it at all, however
* this function is designed to return an offset that can express the
* amount of data processed by the master, so we return a positive
* integer. */
if (offset < 0) offset = 0;
return offset;
}
/* --------------------------- REPLICATION CRON ---------------------------- */
/* Replication cron function, called 1 time per second. */
void replicationCron(void) {
static long long replication_cron_loops = 0;
/* Non blocking connection timeout? */
if (server.masterhost &&
(server.repl_state == REPL_STATE_CONNECTING ||
slaveIsInHandshakeState()) &&
(time(NULL)-server.repl_transfer_lastio) > server.repl_timeout)
{
serverLog(LL_WARNING,"Timeout connecting to the MASTER...");
cancelReplicationHandshake();
}
/* Bulk transfer I/O timeout? */
if (server.masterhost && server.repl_state == REPL_STATE_TRANSFER &&
(time(NULL)-server.repl_transfer_lastio) > server.repl_timeout)
{
serverLog(LL_WARNING,"Timeout receiving bulk data from MASTER... If the problem persists try to set the 'repl-timeout' parameter in redis.conf to a larger value.");
cancelReplicationHandshake();
}
/* Timed out master when we are an already connected slave? */
if (server.masterhost && server.repl_state == REPL_STATE_CONNECTED &&
(time(NULL)-server.master->lastinteraction) > server.repl_timeout)
{
serverLog(LL_WARNING,"MASTER timeout: no data nor PING received...");
freeClient(server.master);
}
/* Check if we should connect to a MASTER */
if (server.repl_state == REPL_STATE_CONNECT) {
serverLog(LL_NOTICE,"Connecting to MASTER %s:%d",
server.masterhost, server.masterport);
if (connectWithMaster() == C_OK) {
serverLog(LL_NOTICE,"MASTER <-> SLAVE sync started");
}
}
/* Send ACK to master from time to time.
* Note that we do not send periodic acks to masters that don't
* support PSYNC and replication offsets. */
if (server.masterhost && server.master &&
!(server.master->flags & CLIENT_PRE_PSYNC))
replicationSendAck();
/* If we have attached slaves, PING them from time to time.
* So slaves can implement an explicit timeout to masters, and will
* be able to detect a link disconnection even if the TCP connection
* will not actually go down. */
listIter li;
listNode *ln;
robj *ping_argv[1];
/* First, send PING according to ping_slave_period. */
if ((replication_cron_loops % server.repl_ping_slave_period) == 0 &&
listLength(server.slaves))
{
ping_argv[0] = createStringObject("PING",4);
replicationFeedSlaves(server.slaves, server.slaveseldb,
ping_argv, 1);
decrRefCount(ping_argv[0]);
}
/* Second, send a newline to all the slaves in pre-synchronization
* stage, that is, slaves waiting for the master to create the RDB file.
*
* Also send the a newline to all the chained slaves we have, if we lost
* connection from our master, to keep the slaves aware that their
* master is online. This is needed since sub-slaves only receive proxied
* data from top-level masters, so there is no explicit pinging in order
* to avoid altering the replication offsets. This special out of band
* pings (newlines) can be sent, they will have no effect in the offset.
*
* The newline will be ignored by the slave but will refresh the
* last interaction timer preventing a timeout. In this case we ignore the
* ping period and refresh the connection once per second since certain
* timeouts are set at a few seconds (example: PSYNC response). */
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
int is_presync =
(slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START ||
(slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END &&
server.rdb_child_type != RDB_CHILD_TYPE_SOCKET));
if (is_presync) {
if (write(slave->fd, "\n", 1) == -1) {
/* Don't worry about socket errors, it's just a ping. */
}
}
}
/* Disconnect timedout slaves. */
if (listLength(server.slaves)) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate != SLAVE_STATE_ONLINE) continue;
if (slave->flags & CLIENT_PRE_PSYNC) continue;
if ((server.unixtime - slave->repl_ack_time) > server.repl_timeout)
{
serverLog(LL_WARNING, "Disconnecting timedout slave: %s",
replicationGetSlaveName(slave));
freeClient(slave);
}
}
}
/* If this is a master without attached slaves and there is a replication
* backlog active, in order to reclaim memory we can free it after some
* (configured) time. Note that this cannot be done for slaves: slaves
* without sub-slaves attached should still accumulate data into the
* backlog, in order to reply to PSYNC queries if they are turned into
* masters after a failover. */
if (listLength(server.slaves) == 0 && server.repl_backlog_time_limit &&
server.repl_backlog && server.masterhost == NULL)
{
time_t idle = server.unixtime - server.repl_no_slaves_since;
if (idle > server.repl_backlog_time_limit) {
/* When we free the backlog, we always use a new
* replication ID and clear the ID2. This is needed
* because when there is no backlog, the master_repl_offset
* is not updated, but we would still retain our replication
* ID, leading to the following problem:
*
* 1. We are a master instance.
* 2. Our slave is promoted to master. It's repl-id-2 will
* be the same as our repl-id.
* 3. We, yet as master, receive some updates, that will not
* increment the master_repl_offset.
* 4. Later we are turned into a slave, connecto to the new
* master that will accept our PSYNC request by second
* replication ID, but there will be data inconsistency
* because we received writes. */
changeReplicationId();
clearReplicationId2();
freeReplicationBacklog();
serverLog(LL_NOTICE,
"Replication backlog freed after %d seconds "
"without connected slaves.",
(int) server.repl_backlog_time_limit);
}
}
/* If AOF is disabled and we no longer have attached slaves, we can
* free our Replication Script Cache as there is no need to propagate
* EVALSHA at all. */
if (listLength(server.slaves) == 0 &&
server.aof_state == AOF_OFF &&
listLength(server.repl_scriptcache_fifo) != 0)
{
replicationScriptCacheFlush();
}
/* Start a BGSAVE good for replication if we have slaves in
* WAIT_BGSAVE_START state.
*
* In case of diskless replication, we make sure to wait the specified
* number of seconds (according to configuration) so that other slaves
* have the time to arrive before we start streaming. */
if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) {
time_t idle, max_idle = 0;
int slaves_waiting = 0;
int mincapa = -1;
listNode *ln;
listIter li;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) {
idle = server.unixtime - slave->lastinteraction;
if (idle > max_idle) max_idle = idle;
slaves_waiting++;
mincapa = (mincapa == -1) ? slave->slave_capa :
(mincapa & slave->slave_capa);
}
}
if (slaves_waiting &&
(!server.repl_diskless_sync ||
max_idle > server.repl_diskless_sync_delay))
{
/* Start the BGSAVE. The called function may start a
* BGSAVE with socket target or disk target depending on the
* configuration and slaves capabilities. */
startBgsaveForReplication(mincapa);
}
}
/* Refresh the number of slaves with lag <= min-slaves-max-lag. */
refreshGoodSlavesCount();
replication_cron_loops++; /* Incremented with frequency 1 HZ. */
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。