代码拉取完成,页面将自动刷新
from keras import Input, Model
from keras.src.layers import Activation, Add, BatchNormalization, Conv2D, GlobalAveragePooling2D, MaxPooling2D, \
SeparableConv2D
from keras.src.regularizers import l2
from keras.src.saving.saving_api import load_model
def xception_block(input_tensor, num_kernels, l2_reg=0.01):
""" Xception core block.
# Arguments
input_tenso: Keras tensor.
num_kernels: Int. Number of convolutional kernels in block.
l2_reg: Float. l2 regression.
# Returns
output tensor for the block.
"""
residual = Conv2D(num_kernels, 1, strides=(2, 2), padding='same', use_bias=False)(input_tensor)
residual = BatchNormalization()(residual)
x = SeparableConv2D(num_kernels, 3, padding='same', kernel_regularizer=l2(l2_reg), use_bias=False)(input_tensor)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(num_kernels, 3, padding='same', kernel_regularizer=l2(l2_reg), use_bias=False)(x)
x = BatchNormalization()(x)
x = MaxPooling2D(3, strides=(2, 2), padding='same')(x)
x = Add()([x, residual])
return x
def build_xception(input_shape, num_classes, stem_kernels, block_kernels, l2_reg=0.01):
""" Function for instantiating an Xception model.
# Arguments
input_shape: List corresponding to the input shape of the model.
num_classes: Integer.
stem_kernels: List of integers. Each element of the list indicates the number of kernels used as stem blocks.
block_kernels: List of integers. Each element of the list Indicates the number of kernels used in the xception blocks.
l2_reg. Float. L2 regularization used in the convolutional kernels.
# Returns
Tensorflow-Keras model.
# References
- [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357)
"""
x = inputs = Input(input_shape, name='image')
for num_kernels in stem_kernels:
x = Conv2D(num_kernels, 3, kernel_regularizer=l2(l2_reg), use_bias=False, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
for num_kernels in block_kernels:
x = xception_block(x, num_kernels, l2_reg)
x = Conv2D(num_classes, 3, kernel_regularizer=l2(l2_reg), padding='same')(x)
x = GlobalAveragePooling2D()(x)
output = Activation('softmax', name='label')(x)
model_name = '-'.join(['XCEPTION', str(input_shape[0]), str(stem_kernels[0]), str(len(block_kernels))])
model = Model(inputs, output, name=model_name)
return model
def mini_xception(input_shape, num_classes, weights=None):
""" Build MiniXception (see references).
# Arguments
input_shape: List of three integers e.g. ``[H, W, 3]``
num_classes: Int.
weights: ``None`` or string with pre-trained dataset. Valid datasets include only ``FER``.
# Returns
Tensorflow-Keras model.
# References
- [Real-time Convolutional Neural Networks for Emotion and Gender Classification](https://arxiv.org/abs/1710.07557)
"""
if weights == 'FER':
model_file = 'models/fer2013_mini_XCEPTION.119-0.65.hdf5'
model = load_model(model_file)
else:
stem_kernels = [32, 64]
block_data = [128, 128, 256, 256, 512, 512, 1024]
model_inputs = (input_shape, num_classes, stem_kernels, block_data)
model = build_xception(*model_inputs)
model._name = 'MINI-XCEPTION'
return model
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。