1 Star 0 Fork 0

OPLG / kiali

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Kiali Tweet about Kiali

Apache 2.0 license

Introduction

kiali is a management console for Istio service mesh. Kiali can be quickly installed as an Istio add-on, or trusted as a part of your production environment.

Contributing

First, check the Community section on kiali.io, which provides a brief introduction on contributing, how to report issues and request features, and how to reach us.

If you would like to make code contributions, please also check the Contribution Guide.

Getting Started

The target audience of this README are developers. If you are not a developer but want to learn more about Kiali, the Kiali documentation should be more helpful. For instructions on installing Kiali, please read the Installation page.

How and where Kiali is released?

Read the RELEASING.adoc file.

Developer setup

Note
Please, complement the content of this readme document with the README.adoc document of the front-end repository. Although this document has some instructions about building the front-end, they are not complete.

Make sure you have the following tools:

  • The Go Programming Language

    • Currently, Kiali releases are built using a specific minimum version of Go as declared in the Makefile. Although Kiali may build correctly using other versions of Go, it’s suggested to use the version that the Makefile uses for your own development to ensure replicatable builds.

  • git

  • gcc

  • Docker or Podman

    • If you are using podman declare the environment variable DORP=podman.

  • NodeJS (Node.js >= 12.22.0 && <16 with the NPM command)

  • Yarn

  • The GNU make utility or any of it’s alternatives

Once you have the required developer tools, you can get and build the code with the following script:

# Checkout the source code
mkdir kiali_sources
cd kiali_sources
export KIALI_SOURCES=$(pwd)

git clone https://github.com/kiali/kiali.git
git clone https://github.com/kiali/kiali-operator.git
git clone https://github.com/kiali/helm-charts.git

ln -s $KIALI_SOURCES/kiali-operator kiali/operator

# Build the back-end and run the tests
cd $KIALI_SOURCES/kiali
make build test

# You can pass go test flags through the GO_TEST_FLAGS env var
# make -e GO_TEST_FLAGS="-race -v -run=\"TestCanConnectToIstiodReachable\"" test

# Build the front-end and run the tests
make build-ui-test
Note
The rest of this README assumes the directory tree created by the previous commands:
-- kiali_sources
   |- kiali
   |- kiali-operator
   \- helm-charts

Create a Kubernetes cluster and install a Service Mesh

Since Kiali is a management console for an Istio-based service mesh, you will need an Istio-like Service Mesh to try Kiali. Then, Istio Meshes are installed on Kubernetes clusters.

We provide a few unsupported scripts that can help to get started:

  • You can use the crc-openshift.sh script to create an OpenShift cluster on your local machine.

  • If you are familiar to minikube, you may try the k8s-minikube.sh script. It has the option to install Dex which is useful if you want to test with OpenID.

  • Finally, the install-istio-via-istioctl.sh and the install-bookinfo-demo.sh scripts can assist into installing Istio and the Bookinfo sample application in your cluster, respectively. You can try running these scripts without any arguments.

These scripts are written to rely on the minimum dependencies as possible and will try to download any required tools.

You can also use kind, however we don’t have a script to create a kind cluster.

Depending on the type of cluster you are using, you should define the CLUSTER_TYPE environment variable on your shell to openshift (this is the default if not set), minikube or kind value so that the Makefiles can assist in other operations. If you are not using any of these clusters, you should set the environment variable to CLUSTER_TYPE=local.

Note
If you are using minikube it’s recommended that you enable the registry and ingress add-on. The k8s-minikube.sh script should do this for you.
Note
If you are using docker and using minikube’s registry add-on or any custom non-secure registry, make sure the Docker daemon is properly configured to use your registry.

Building the Container Image and deploying to a cluster

Assuming that:

  • you have successfully built the back-end and the front-end,

  • you also have created a Kubernetes cluster with an Istio-based Service Mesh installed on it,

  • and you are not using the CLUSTER_TYPE=local environment variable

the following commands should deploy a development build of Kiali to the cluster:

cd $KIALI_SOURCES/kiali

# Build the Kiali-server and Kiali-operator container images and push them to the cluster
make cluster-push

# If you want to only build and push the Kiali-server container images:
# make cluster-push-kiali

# If you want to only build and push the Kiali-operator container images:
# make cluster-push-operator

# Deploy the operator to the cluster
make operator-create

# Create a KialCR to instruct the operator to deploy Kiali
make kiali-create

If you are using the CLUSTER_TYPE=local environment variable, you will need to declare some additional environment variables to set the container registry where container images should be pushed and use make container-push* targets instead of cluster-push* targets. For example, if your container registry is localhost:5000:

export QUAY_NAME=localhost:5000/kiali/kiali
export CONTAINER_NAME=localhost:5000/kiali/kiali
export OPERATOR_QUAY_NAME=localhost:5000/kiali/kiali-operator
export OPERATOR_CONTAINER_NAME=localhost:5000/kiali/kiali-operator

cd $KIALI_SOURCES/kiali

# Build the Kiali-server and Kiali-operator container images and push them to the cluster
make container-build container-push

# If you want to only build and push the Kiali-server container images:
# make container-build-kiali container-push-kiali-quay

# If you want to only build and push the Kiali-operator container images:
# make container-build-operator container-push-operator-quay

# Deploy the operator to the cluster
make operator-create

# Create a KialCR to instruct the operator to deploy Kiali
make kiali-create

Reloading Kiali image

If you already have Kiali installed and you want to recreate the kiali server pod, you can run the following command:

cd $KIALI_SOURCES/kiali
make kiali-reload-image

This is to facilitate development. To quickly build a new Kiali container image and load it to the cluster, you can run:

cd $KIALI_SOURCES/kiali/frontend
yarn && yarn build

cd $KIALI_SOURCES/kiali
make clean build cluster-push-kiali kiali-reload-image
Note
There is no equivalent reload command for the operator. You would need to manually reload the operator via kubectl or oc commands.

Cluster clean-up

cd $KIALI_SOURCES/kiali

# Delete the Kiali CR to let the operator remove Kiali.
make kiali-delete

# If the previous command never ends, the following command forces removal by bypassing the operator
# make kiali-purge

# Remove the operator
# NOTE: After this completes, the `kiali-create` and `kiali-delete` targets will be ineffective
# until you run the `operator-create` target to re-deploy the Kiali operator again.
make operator-delete

Code formatting and linting

If you are changing the back-end code of Kiali, before submitting a pull request make sure your changes are properly formatted and no new linting issues are introduced by running:

# CD to the back-end source code
cd $KIALI_SOURCES/kiali

# Install linting tools
make lint-install

# Format the code and run linters
make format lint

Enable tracing

Kiali itself is instrumented with opentelemetry tracing to help provide insights and surface performance issues for the kiali server. To enable, set the server.observability.tracing.enabled and server.observability.tracing.collector_url configuration options.

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
  name: kiali
spec:
...
  server:
    observability:
      tracing:
        collector_url: http://jaeger-collector.istio-system:14268/api/traces
        enabled: true
...

Running Standalone

You may want to run Kiali outside of any cluster environment for debugging purposes. To do this, you will want to use the run-kiali.sh hack script located in the hack directory. See the --help output for the options you can set. The default configuration it uses is found in the config template file also located in the hack directory. Read the comments at the tops of both files for more details.

cd $KIALI_SOURCES/kiali/hack
./run-kiali.sh

Running integration tests

There are two sets of integration tests. The first are backend tests that test the Kiali API directly. These can be found at backend tests. The second are frontend Cypress tests that test Kiali through the browser. These can be found at frontend tests.

Both tests are run as part of the CI pipeline. If you’d like to run these same tests locally, you can use this script to setup your local environment and run the integration tests. Or these tests can be run against any live environment that meets the following requirements.

Requirements: - Istio - Kiali - bookinfo demo app - error rates demo app

You can use this script to install all the neccessary demo apps for testing. The script supports both openshift and non-openshift deployments.

# If you are doing frontend development, start the frontend development server, where `<kiali-url>` is the URL to the base Kiali UI location such as `http://localhost:20001/kiali`:
make -e YARN_START_URL=http://<kiali-url> yarn-start

# Start the cypress tests. The tests will run against the frontend development server by default.
# Otherwise you can pass a custom url with env vars:
#
# make -e CYPRESS_BASE_URL=http://<kiali-url> cypress-gui
make cypress-gui

Note that make cypress-gui runs the Cypress GUI that allows you to pick which individual tests to run. To run the entire test suite in headless mode, use the make target cypress-run instead.

Debugging Server Backend

VisualStudio Code

If you are using VisualStudio Code, you can install the following launcher.json that is then used to launch the Kiali Server in the debugger. Run the hack/run-kiali.sh script first to ensure the proper services are up (such as the Prometheus port-forward proxy).

{
    // To use this, first run "hack/run-kiali.sh --tmp-root-dir $HOME/tmp --enable-server false"
    // Pass in --help to that hack script for details on more options.
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Launch Kiali to use hack script services",
            "type": "go",
            "request": "launch",
            "mode": "debug",
            "program": "${workspaceRoot}/kiali.go",
            "cwd": "${env:HOME}/tmp/run-kiali",
            "args": ["-config", "${env:HOME}/tmp/run-kiali/run-kiali-config.yaml"],
            "env": {
                "KUBERNETES_SERVICE_HOST": "127.0.0.1",
                "KUBERNETES_SERVICE_PORT": "8001",
                "LOG_LEVEL": "trace"
            }
        }
    ]
}

Debugging GUI Frontend

You can debug the Kiali GUI directly inside of Google Chrome using the Chrome Developer Tools or using VisualStudio Code.

In order to use either one, you first must perform some initial steps.

First, run the Kiali Server backend, either normally within a cluster or via run-kiali.sh as explained earlier. Determine what the Kiali URL is before moving to the next step. For example, if you run Kiali in minikube, and you set up a port-forward that exposes it, the URL to remember will be http://localhost:20001/kiali.

Second, run the GUI frontend using make: make -e YARN_START_URL=<kiali-url> yarn-start where <kiali-url> is the URL you determined from the previous step. You may need to also pass -e PORT=3001 to override the default port where the yarn server will listen to (the default is 3000 which will conflict with Grafana if you started the Kiali Server via run-kiali.sh). Some examples:

  • If the Kiali Server is running in minikube with a port-forward exposing it, then run make -e YARN_START_URL=http://localhost:20001/kiali yarn-start.

  • If the Kiali Server is running in OpenShift with the usual Kiali Route exposing it, then run make -e YARN_START_URL=https://<Kiali-OpenShift-Route-IP>/ yarn-start.

  • If the Kiali Server is running locally via run-kiali.sh, then run make -e YARN_START_URL=http://localhost:20001/kiali -e PORT=3001 yarn-start.

The yarn-start make command will start the Kiali GUI frontend on a local endpoint - when it is ready, look at the output for the "Local" URL you use to access it. The output will look something like this:

Compiled successfully!

You can now view @kiali/kiali-ui in the browser.

  Local:            http://localhost:3001
  On Your Network:  http://192.168.1.15:3001
...

At this point, you can begin to set up your debugger tool of choice - see the next sections.

Google Chrome Developer Tools

Start Google Chrome and point the browser to the local URL for the Kiali GUI frontend started by yarn-start (in the example above, that will be http://localhost:3001).

In Google Chrome, open the Developer Tools. You can press F12 or Control-Shift-I to do this.

Within the Developer Tools, navigate to the Sources tab, then the Filesystem sub-tab, and press the + Add folder to workspace link. In the file selection dialog, select your Kiali frontend/src folder. This will inform Developer Tools where your Kiali GUI frontend source code can be found.

At this point, you need to give Google Chrome permission to access your local source code folder. Towards the top of the browser window, you will see a prompt - press the "Allow" button to give Chrome the necessary permissions it needs.

You are now ready to debug the Kiali Server frontend. You can set breakpoints, inspect variables, examine stack traces, etc. just as you can do with any typical debugging tool.

VisualStudio Code

If you are using VisualStudio Code, you can install the following launcher.json that is then used to launch Google Chrome to debug the Kiali Server GUI frontend in the debugger. The url setting is the local URL of the yarn-start server - make sure you use the one appropriate for your environment.

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "Launch Chrome",
            "type": "chrome",
            "request": "launch",
            "url": "http://localhost:3001",
            "webRoot": "${workspaceFolder}"
        }
    ]
}

Configuration

Many configuration settings can optionally be set within the Kiali Operator custom resource (CR) file. See this example Kiali CR file that has all the configuration settings documented.

Embedding Kiali

If you want to embed Kiali in other applications, Kiali offers a simple feature called Kiosk mode. In this mode, Kiali won’t show the main header, nor the main navigation bar.

To enable Kiosk mode, you only need to add a kiosk=<platform_id> URL parameter. You will need to use the full path of the page you want to embed. For example, assuming that you access Kiali through HTTPS:

  • To embed the Overview page, use https://kiali_path/overview?kiosk=console.

  • To embed the Graph page, use https://kiali_path/graph/namespaces?kiosk=console.

  • To embed the Applications list page, use https://kiali_path/applications?kiosk=console.

If the page you want to embed uses other URL arguments, you can specify any of them to preset options. For example, if you want to embed the graph of the bookinfo namespace, use the following URL: http://kiali_path/graph/namespaces?namespaces=bookinfo&kiosk=console.

<platform_id> value in the kiosk URL parameter will be used in future use cases to add conditional logic on embedded use cases, for now, any non empty value will enable the kiosk mode.

Configure External Services

Grafana

If you have Grafana installed in a custom way that is not easily auto-detectable by Kiali, you need to change in the Kiali CR the value of the grafana > url

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
  name: kiali
spec:
...
    external_services:
      grafana:
        url: http://grafana-istio-system.127.0.0.1.nip.io
...

Additional Notes

Upgrading Go

The Kiali project will periodically upgrade to a newer version of Go. These are the steps that need to be performed in order for the Kiali build to use a different version of Go:

  1. In the top Makefile, change the value of the variable GO_VERSION_KIALI to the new Go version (use a z-stream version: "x.y.z").

  2. Run go mod edit -go=x.y where "x" and "y" are the major/minor versions of the Go version being used.

  3. Run go mod tidy -v

  4. Run make clean build build-ui test to ensure everything builds correctly. If any problems occur, obviously you must fix them.

  5. Commit the changes to your working branch, create a PR, and make sure everything builds and works before merging the PR.

Procedure to check and update patternfly versions

  1. Launch command npx npm-check-updates -t latest -f '/^@patternfly/'

  2. Launch yarn install to update the yarn.lock

  3. Add to the commit package.json and yarn.lock

Running the UI outside the cluster

When developing the Kiali UI you will find it useful to run it outside of the cluster to make it easier to update the UI code and see the changes without having to re-deploy. The preferred approach for this is to use the proxy feature of React. The process is described here. Alternatively, you can use the make -e YARN_START_URL=<url> yarn-start command where <url> is to the Kiali backend.

Disabling SSL

In the provided OpenShift templates, SSL is turned on by default. If you want to turn it off, you should:

  • Remove the "tls: termination: reencrypt" option from the Kiali route

  • Remove the "identity" block, with certificate paths, from the Kiali Config Map.

  • Optionally you can also remove the annotation "service.beta.openshift.io/serving-cert-secret-name" in the Kiali Service, and the related kiali-cabundle volume that is declared and mounted in Kiali Deployment (but if you don’t, they will just be ignored).

Exposing Kiali to External Clients Using Istio Gateway

The operator will create a Route or Ingress by default (see the Kiali CR setting "deployment.ingress_enabled"). If you want to expose Kiali via Istio itself, you can create Gateway, Virtual Service, and Destination Rule resources similar to below:

---
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: kiali-gateway
  namespace: istio-system
spec:
  selector:
    istio: ingressgateway
  servers:
  - port:
      number: 80
      name: http-kiali
      protocol: HTTP
    # https://istio.io/latest/docs/reference/config/networking/gateway/#ServerTLSSettings
    tls:
      httpsRedirect: false
    hosts: [<your-host>]
  - port:
      number: 443
      name: https-kiali
      protocol: HTTPS
    tls: {}
    hosts: [<your-host>]
...
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: kiali-virtualservice
  namespace: istio-system
spec:
  gateways:
  - kiali-gateway
  hosts: [<your-host>]
  http:
  - route:
    - destination:
        host: kiali.istio-system.svc.cluster.local
        port:
          number: 20001
      weight: 100
...
---
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: kiali-destinationrule
  namespace: istio-system
spec:
  host: kiali
  trafficPolicy:
    tls:
      mode: DISABLE
...

Experimental

Observing a Remote Cluster

Note
The "Central IstioD" setup is currently named "Primary-remote" multi-cluster setup.
Warning
When this support was incorporated into Kiali, the "Central IstioD" setup of Istio was in an early development phase. These instructions are probably now broken.

There are certain use cases where Kiali needs to be deployed in one cluster (Control Plane) and observe a different cluster (Data Plane). Diagram

Follow these steps:

1: You should have the Istio with an External Control Plane setup running

2: Create the Kiali ClusterRole, ClusterRoleBinding, and ServiceAccount in the Data Plane cluster

3: Create a remote secret in the Control Plane, using the Data Plane ServiceAccount you just created. This allows the Control Plane to read from and modify the Data Plane

istioctl x create-remote-secret --service-account kiali-service-account --context=$DataPlane --name kiali | kubectl apply -n istio-system --context=$ControlPlane -f -

4: You will now run Kiali in the Control Plane. You need to add the remote secret to the Kiali Deployment by specifying a Volume and VolumeMount. When Kiali sees /kiali-remote-secret/kiali it will use the remote cluster’s API server instead of the local API server

spec:
  template:
    spec:
      containers:
      - volumeMounts:
        - mountPath: /kiali-remote-secret
          name: kiali-remote-secret
      volumes:
      - name: kiali-remote-secret
        secret:
          defaultMode: 420
          optional: true
          secretName: istio-remote-secret-kiali

5: Kiali now needs the Istio metrics from the sidecars. You need to run Prometheus in the Control Plane and have it scrape the metrics from an envoyMetricsService. These metrics are required.

6: Kiali in the Control Plane should now be fully functional with the Data Plane

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [2022] [@kiali/maintainers] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

Kiali 是 Istio Service mesh 的控制台。Kiali 可以作为 Istio 附加组件快速安装,也可以作为生产环境的一部分进行信任。 展开 收起
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
1
https://gitee.com/oplg/kiali.git
git@gitee.com:oplg/kiali.git
oplg
kiali
kiali
master

搜索帮助