中药识别系统主要采用APP端拍照上传的方式,构建卷积神经网络(CNN)对图像进行识别,具有识别效率高,准确度高的特点。APP端的功能包括但不限于拍照识别、中药问答(付费咨询)、检索查询、中药性状以及功效查看、方剂智能推荐【开发中】等;本系统包含APP端以及服务器端。
本项目包含六个模块:
medicine-server服务器端工程
Gradle构建
SpringBoot框架,一键启动与部署
文档数据库:MongoDB
全文检索:Elasticsearch + IK分词器
数据库:MySQL
深度学习运行时架构:ONNX Runtime(ONNX Runtime is a cross-platform inference and training machine-learning accelerator)
medicine-crawler爬虫工程
爬虫主要用来爬取训练集以及中药的详细信息,包含但不限于:中药名称、中药形态、图片、 别名、英文名、配伍药方、功效与作用、临床应用、产地分布、药用部位、 性味归经、药理研究、主要成分、使用禁忌、采收加工、药材性状等信息。
爬虫框架:WebMagic(参考代码)
数据持久化:MongoDB
数据结构(简略展示)
medicine-model卷积神经网络工程
Language: Python
使用TensorFlow 深度学习框架,使用Keras会大幅缩减代码量
常用的卷积网络模型及在ImageNet上的准确率
模型 | 大小 | Top-1准确率 | Top-5准确率 | 参数数量 | 深度 |
---|---|---|---|---|---|
Xception | 88 MB | 0.790 | 0.945 | 22,910,480 | 126 |
VGG16 | 528 MB | 0.713 | 0.901 | 138,357,544 | 23 |
VGG19 | 549 MB | 0.713 | 0.900 | 143,667,240 | 26 |
ResNet50 | 98 MB | 0.749 | 0.921 | 25,636,712 | 168 |
ResNet101 | 171 MB | 0.764 | 0.928 | 44,707,176 | - |
ResNet152 | 232 MB | 0.766 | 0.931 | 60,419,944 | - |
ResNet50V2 | 98 MB | 0.760 | 0.930 | 25,613,800 | - |
ResNet101V2 | 171 MB | 0.772 | 0.938 | 44,675,560 | - |
ResNet152V2 | 232 MB | 0.780 | 0.942 | 60,380,648 | - |
ResNeXt50 | 96 MB | 0.777 | 0.938 | 25,097,128 | - |
ResNeXt101 | 170 MB | 0.787 | 0.943 | 44,315,560 | - |
InceptionV3 | 92 MB | 0.779 | 0.937 | 23,851,784 | 159 |
InceptionResNetV2 | 215 MB | 0.803 | 0.953 | 55,873,736 | 572 |
MobileNet | 16 MB | 0.704 | 0.895 | 4,253,864 | 88 |
MobileNetV2 | 14 MB | 0.713 | 0.901 | 3,538,984 | 88 |
DenseNet121 | 33 MB | 0.750 | 0.923 | 8,062,504 | 121 |
DenseNet169 | 57 MB | 0.762 | 0.932 | 14,307,880 | 169 |
DenseNet201 | 80 MB | 0.773 | 0.936 | 20,242,984 | 201 |
NASNetMobile | 23 MB | 0.744 | 0.919 | 5,326,716 | - |
NASNetLarge | 343 MB | 0.825 | 0.960 | 88,949,818 | - |
由于硬件条件限制,综合考虑模型的准确率、大小以及复杂度等因素,采用了Xception模型,该模型是134层(包含激活层,批标准化层等)拓扑深度的卷积网络模型。
Xception函数定义:
def Xception(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs)
# 参数
# include_top:是否保留顶层的全连接网络
# weights:None代表随机初始化,即不加载预训练权重。'imagenet’代表加载预训练权重
# input_tensor:可填入Keras tensor作为模型的图像输入tensor
# input_shape:可选,仅当include_top=False有效,应为长为3的tuple,指明输入图片的shape,图片的宽高必须大于71,如(150,150,3)
# pooling:当include_top=False时,该参数指定了池化方式。None代表不池化,最后一个卷积层的输出为4D张量。‘avg’代表全局平均池化,‘max’代表全局最大值池化。
# classes:可选,图片分类的类别数,仅当include_top=True并且不加载预训练权重时可用
构建代码
设置Xception参数
迁移学习参数权重加载:xception_weights
# 设置输入图像的宽高以及通道数
img_size = (299, 299, 3)
base_model = keras.applications.xception.Xception(include_top=False,
weights='..\\resources\\keras-model\\xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
input_shape=img_size,
pooling='avg')
# 全连接层,使用softmax激活函数计算概率值,分类大小是628
model = keras.layers.Dense(628, activation='softmax', name='predictions')(base_model.output)
model = keras.Model(base_model.input, model)
# 锁定卷积层
for layer in base_model.layers:
layer.trainable = False
全连接层训练(v1.0)
from base_model import model
# 设置训练集图片大小以及目录参数
img_size = (299, 299)
dataset_dir = '..\\dataset\\dataset'
img_save_to_dir = 'resources\\image-traing\\'
log_dir = 'resources\\train-log'
model_dir = 'resources\\keras-model\\'
# 使用数据增强
train_datagen = keras.preprocessing.image.ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
width_shift_range=0.4,
height_shift_range=0.4,
rotation_range=90,
zoom_range=0.7,
horizontal_flip=True,
vertical_flip=True,
preprocessing_function=keras.applications.xception.preprocess_input)
test_datagen = keras.preprocessing.image.ImageDataGenerator(
preprocessing_function=keras.applications.xception.preprocess_input)
train_generator = train_datagen.flow_from_directory(
dataset_dir,
save_to_dir=img_save_to_dir,
target_size=img_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
dataset_dir,
save_to_dir=img_save_to_dir,
target_size=img_size,
class_mode='categorical')
# 早停法以及动态学习率设置
early_stop = EarlyStopping(monitor='val_loss', patience=13)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=7, mode='auto', factor=0.2)
tensorboard = keras.callbacks.tensorboard_v2.TensorBoard(log_dir=log_dir)
for layer in model.layers:
layer.trainable = False
# 模型编译
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=100,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size,
callbacks=[early_stop, reduce_lr, tensorboard])
# 模型导出
model.save(model_dir + 'chinese_medicine_model_v1.0.h5')
对于顶部的6层卷积层,我们使用数据集对权重参数进行微调
# 加载模型
model=keras.models.load_model('resources\\keras-model\\chinese_medicine_model_v2.0.h5')
for layer in model.layers:
layer.trainable = False
for layer in model.layers[126:132]:
layer.trainable = True
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=100,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size,
callbacks=[early_stop, reduce_lr, tensorboard])
model.save(model_dir + 'chinese_medicine_model_v2.0.h5')
服务器端,使用ONNX Runtime调用训练好的模型
模型概览
训练过程正确率以及损失函数可视化展示
依赖 | 版本 |
---|---|
JDK | 11+ |
Python | 3.6 |
Gradle | 6.5 |
TensorFlow | 2.0 |
MongoDB | 4.2.2 |
MySQL | 8.0+ |
Spring Boot | 2.2.2 |
Elasticsearch | 7.4.2 |
IK分词器 | 7.4.2 |
ONNX Runtime | 1.8.1 |
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。
代码活跃度
社区活跃度
团队健康
流行趋势
影响力
:与代码提交频次相关
:与项目和用户的issue、pr互动相关
:与团队成员人数和稳定度相关
:与项目近期受关注度相关
:与项目的star、下载量等社交指标相关